Cargando…
Halogen, chalcogen, and hydrogen bonding in organoiodine cocrystals of heterocyclic thiones: imidazolidine-2-thione, 2-mercaptobenzimidazole, 2-mercapto-5-methylbenzimidazole, 2-mercaptobenzoxazole, and 2-mercaptobenzothiazole
Through the combination of heterocyclic thiones with variation in the identity of the heterocyclic elements, namely, imidazolidine-2-thione, 2-mercaptobenzimidazole, 2-mercapto-5-methylbenzimidazole, 2-mercaptobenzoxazole, and 2-mercaptobenzothiazole with the common halogen-bond donors 1,2-,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9720885/ https://www.ncbi.nlm.nih.gov/pubmed/36468553 http://dx.doi.org/10.1107/S2053229622009548 |
Sumario: | Through the combination of heterocyclic thiones with variation in the identity of the heterocyclic elements, namely, imidazolidine-2-thione, 2-mercaptobenzimidazole, 2-mercapto-5-methylbenzimidazole, 2-mercaptobenzoxazole, and 2-mercaptobenzothiazole with the common halogen-bond donors 1,2-, 1,3-, and 1,4-diiodotetrafluorobenzene, 1,3,5-trifluorotriiodobenzene, and tetraiodoethylene, a series of 18 new crystalline structures were characterized. In most cases, N—H⋯S hydrogen bonding was observed, with these interactions in imidazole-containing structures typically resulting in two-dimensional motifs (i.e. ribbons). Lacking the second N—H group, the thiazole and oxazole hydrogen bonding resulted in only dimeric pairs. C—I⋯S and C—I⋯I halogen bonding, as well as C=S⋯I chalcogen bonding, served to consolidate the packing by linking the hydrogen-bonding ribbons or dimeric pairs. |
---|