Cargando…

Studying of COVID-19 fractional model: Stability analysis

This article focuses on the recent epidemic caused by COVID-19 and takes into account several measures that have been taken by governments, including complete closure, media coverage, and attention to public hygiene. It is well known that mathematical models in epidemiology have helped determine the...

Descripción completa

Detalles Bibliográficos
Autores principales: Khalaf, Sanaa L., Kadhim, Mohammed S., Khudair, Ayad R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Author(s). Published by Elsevier B.V. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721170/
https://www.ncbi.nlm.nih.gov/pubmed/36505269
http://dx.doi.org/10.1016/j.padiff.2022.100470
Descripción
Sumario:This article focuses on the recent epidemic caused by COVID-19 and takes into account several measures that have been taken by governments, including complete closure, media coverage, and attention to public hygiene. It is well known that mathematical models in epidemiology have helped determine the best strategies for disease control. This motivates us to construct a fractional mathematical model that includes quarantine categories as well as government sanctions. In this article, we prove the existence and uniqueness of positive bounded solutions for the suggested model. Also, we investigate the stability of the disease-free and endemic equilibriums by using the basic reproduction number (BRN). Moreover, we investigate the stability of the considering model in the sense of Ulam–Hyers criteria. To underpin and demonstrate this study, we provide a numerical simulation, whose results are consistent with the analysis presented in this article.