Cargando…
Explainable Tensor Multi-Task Ensemble Learning Based on Brain Structure Variation for Alzheimer’s Disease Dynamic Prediction
Machine learning approaches for predicting Alzheimer’s disease (AD) progression can substantially assist researchers and clinicians in developing effective AD preventive and treatment strategies. This study proposes a novel machine learning algorithm to predict the AD progression utilising a multi-t...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721355/ https://www.ncbi.nlm.nih.gov/pubmed/36478772 http://dx.doi.org/10.1109/JTEHM.2022.3219775 |
Ejemplares similares
-
DEML: Drug Synergy and Interaction Prediction Using Ensemble-Based Multi-Task Learning
por: Wang, Zhongming, et al.
Publicado: (2023) -
Explainable multi-task learning for multi-modality biological data analysis
por: Tang, Xin, et al.
Publicado: (2023) -
Explainable prediction of daily hospitalizations for cerebrovascular disease using stacked ensemble learning
por: Lu, Xiaoya, et al.
Publicado: (2023) -
An Adaptive Deep Ensemble Learning Method for Dynamic Evolving Diagnostic Task Scenarios
por: Su, Kaixiang, et al.
Publicado: (2021) -
A Tensorized Multitask Deep Learning Network for Progression Prediction of Alzheimer’s Disease
por: Tabarestani, Solale, et al.
Publicado: (2022)