Cargando…
Evaluation of the peritumoral features using radiomics and deep learning technology in non-spiculated and noncalcified masses of the breast on mammography
OBJECTIVE: To assess the significance of peritumoral features based on deep learning in classifying non-spiculated and noncalcified masses (NSNCM) on mammography. METHODS: We retrospectively screened the digital mammography data of 2254 patients who underwent surgery for breast lesions in Harbin Med...
Autores principales: | Guo, Fei, Li, Qiyang, Gao, Fei, Huang, Chencui, Zhang, Fandong, Xu, Jingxu, Xu, Ye, Li, Yuanzhou, Sun, Jianghong, Jiang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721450/ https://www.ncbi.nlm.nih.gov/pubmed/36479079 http://dx.doi.org/10.3389/fonc.2022.1026552 |
Ejemplares similares
-
Focus on the Predictive Value of Subclassification of Extratumoral Structural Abnormalities for Malignant Nonspiculate and Noncalcified Masses on Digital Mammography
por: Xu, Ye, et al.
Publicado: (2022) -
Imaging features of noncalcified DCIS
por: Scudder, JM, et al.
Publicado: (2012) -
Use of Radiomics to Improve Diagnostic Performance of PI-RADS v2.1 in Prostate Cancer
por: Li, Mou, et al.
Publicado: (2021) -
Radiomics Features on Computed Tomography Combined With Clinical-Radiological Factors Predicting Progressive Hemorrhage of Cerebral Contusion
por: Yang, Qingning, et al.
Publicado: (2022) -
Multiregional radiomic model for breast cancer diagnosis: value of ultrasound-based peritumoral and parenchymal radiomics
por: Guo, Suping, et al.
Publicado: (2023)