Cargando…
Deep reinforcement learning for optimal experimental design in biology
The field of optimal experimental design uses mathematical techniques to determine experiments that are maximally informative from a given experimental setup. Here we apply a technique from artificial intelligence—reinforcement learning—to the optimal experimental design task of maximizing confidenc...
Autores principales: | Treloar, Neythen J., Braniff, Nathan, Ingalls, Brian, Barnes, Chris P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721483/ https://www.ncbi.nlm.nih.gov/pubmed/36409776 http://dx.doi.org/10.1371/journal.pcbi.1010695 |
Ejemplares similares
-
Deep reinforcement learning for the control of microbial co-cultures in bioreactors
por: Treloar, Neythen J., et al.
Publicado: (2020) -
NLoed: A Python
Package for Nonlinear Optimal Experimental
Design in Systems Biology
por: Braniff, Nathan, et al.
Publicado: (2022) -
From Microbial Communities to Distributed Computing Systems
por: Karkaria, Behzad D., et al.
Publicado: (2020) -
Optimizing Chemical Reactions with Deep Reinforcement Learning
por: Zhou, Zhenpeng, et al.
Publicado: (2017) -
Optimization of Molecules via Deep Reinforcement Learning
por: Zhou, Zhenpeng, et al.
Publicado: (2019)