Cargando…

Lifecycle of Pyrenopeziza protrusa (Helotiales, Dermateaceae sensu lato) in Magnolia obovata revealed by field observation and molecular quantification

Fungi exhibit saprophytic, parasitic, and symbiotic lifestyles, and flexibly switching between them by the environmental changes and host conditions. However, only a few studies have elucidated the detailed changes in fungal DNA or morphology, including the formation of reproductive structures along...

Descripción completa

Detalles Bibliográficos
Autores principales: Itagaki, Hiyori, Hosoya, Tsuyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Mycological Society of Japan 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9721505/
https://www.ncbi.nlm.nih.gov/pubmed/37090175
http://dx.doi.org/10.47371/mycosci.2021.08.001
Descripción
Sumario:Fungi exhibit saprophytic, parasitic, and symbiotic lifestyles, and flexibly switching between them by the environmental changes and host conditions. However, only a few studies have elucidated the detailed changes in fungal DNA or morphology, including the formation of reproductive structures along with lifestyle switching. We hypothesized that Pyrenopeziza protrusa, which occurs abundantly and specifically on Magnolia obovata as a saprophyte, is also associated with living hosts and switches its lifestyles as part of its lifecycle. To elucidate this hypothesis, we periodically sampled the fresh/fallen leaves of M. obovata to observe the seasonal occurrence of reproductive structures for the isolation and detection/quantification of P. protrusa DNA with newly developed species-specific primers. The isolation frequency and amount of P. protrusa DNA drastically increased in the fresh leaves just before defoliation in autumn, but remained high in fallen leaves from autumn to spring. Abundant production of conidiomata and apothecia was also observed in the fallen leaves with increasing DNA content. These results clarified a large part of the lifecycle of P. protrusa, suggesting that the lifestyle is switched from symbiotic to saprophytic stage by significantly increasing the amount of DNA in response to host conditions according to the seasonal variations.