Cargando…
Early alveolar epithelial cell necrosis is a potential driver of COVID-19-induced acute respiratory distress syndrome
Acute respiratory distress syndrome (ARDS) with COVID-19 is aggravated by hyperinflammatory responses even after the peak of the viral load has passed; however, its underlying mechanisms remain unclear. In the present study, analysis of the alveolar tissue injury markers and epithelial cell death ma...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9722615/ https://www.ncbi.nlm.nih.gov/pubmed/36507222 http://dx.doi.org/10.1016/j.isci.2022.105748 |
_version_ | 1784843995174666240 |
---|---|
author | Tojo, Kentaro Yamamoto, Natsuhiro Tamada, Nao Mihara, Takahiro Abe, Miyo Nishii, Mototsugu Takeuchi, Ichiro Goto, Takahisa |
author_facet | Tojo, Kentaro Yamamoto, Natsuhiro Tamada, Nao Mihara, Takahiro Abe, Miyo Nishii, Mototsugu Takeuchi, Ichiro Goto, Takahisa |
author_sort | Tojo, Kentaro |
collection | PubMed |
description | Acute respiratory distress syndrome (ARDS) with COVID-19 is aggravated by hyperinflammatory responses even after the peak of the viral load has passed; however, its underlying mechanisms remain unclear. In the present study, analysis of the alveolar tissue injury markers and epithelial cell death markers in patients with COVID-19 revealed that COVID-19-induced ARDS was characterized by alveolar epithelial necrosis at an early disease stage. Serum levels of HMGB-1, one of the DAMPs released from necrotic cells, were also significantly elevated in these patients. Further analysis using a mouse model mimicking COVID-19-induced ARDS showed that the alveolar epithelial cell necrosis involved two forms of programmed necrosis, namely necroptosis, and pyroptosis. Finally, the neutralization of HMGB-1 attenuated alveolar tissue injury in the mouse model. Collectively, necrosis, including necroptosis and pyroptosis, is the predominant form of alveolar epithelial cell death at an early disease stage and subsequent release of DAMPs is a potential driver of COVID-19-induced ARDS. |
format | Online Article Text |
id | pubmed-9722615 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-97226152022-12-06 Early alveolar epithelial cell necrosis is a potential driver of COVID-19-induced acute respiratory distress syndrome Tojo, Kentaro Yamamoto, Natsuhiro Tamada, Nao Mihara, Takahiro Abe, Miyo Nishii, Mototsugu Takeuchi, Ichiro Goto, Takahisa iScience Article Acute respiratory distress syndrome (ARDS) with COVID-19 is aggravated by hyperinflammatory responses even after the peak of the viral load has passed; however, its underlying mechanisms remain unclear. In the present study, analysis of the alveolar tissue injury markers and epithelial cell death markers in patients with COVID-19 revealed that COVID-19-induced ARDS was characterized by alveolar epithelial necrosis at an early disease stage. Serum levels of HMGB-1, one of the DAMPs released from necrotic cells, were also significantly elevated in these patients. Further analysis using a mouse model mimicking COVID-19-induced ARDS showed that the alveolar epithelial cell necrosis involved two forms of programmed necrosis, namely necroptosis, and pyroptosis. Finally, the neutralization of HMGB-1 attenuated alveolar tissue injury in the mouse model. Collectively, necrosis, including necroptosis and pyroptosis, is the predominant form of alveolar epithelial cell death at an early disease stage and subsequent release of DAMPs is a potential driver of COVID-19-induced ARDS. Elsevier 2022-12-06 /pmc/articles/PMC9722615/ /pubmed/36507222 http://dx.doi.org/10.1016/j.isci.2022.105748 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tojo, Kentaro Yamamoto, Natsuhiro Tamada, Nao Mihara, Takahiro Abe, Miyo Nishii, Mototsugu Takeuchi, Ichiro Goto, Takahisa Early alveolar epithelial cell necrosis is a potential driver of COVID-19-induced acute respiratory distress syndrome |
title | Early alveolar epithelial cell necrosis is a potential driver of COVID-19-induced acute respiratory distress syndrome |
title_full | Early alveolar epithelial cell necrosis is a potential driver of COVID-19-induced acute respiratory distress syndrome |
title_fullStr | Early alveolar epithelial cell necrosis is a potential driver of COVID-19-induced acute respiratory distress syndrome |
title_full_unstemmed | Early alveolar epithelial cell necrosis is a potential driver of COVID-19-induced acute respiratory distress syndrome |
title_short | Early alveolar epithelial cell necrosis is a potential driver of COVID-19-induced acute respiratory distress syndrome |
title_sort | early alveolar epithelial cell necrosis is a potential driver of covid-19-induced acute respiratory distress syndrome |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9722615/ https://www.ncbi.nlm.nih.gov/pubmed/36507222 http://dx.doi.org/10.1016/j.isci.2022.105748 |
work_keys_str_mv | AT tojokentaro earlyalveolarepithelialcellnecrosisisapotentialdriverofcovid19inducedacuterespiratorydistresssyndrome AT yamamotonatsuhiro earlyalveolarepithelialcellnecrosisisapotentialdriverofcovid19inducedacuterespiratorydistresssyndrome AT tamadanao earlyalveolarepithelialcellnecrosisisapotentialdriverofcovid19inducedacuterespiratorydistresssyndrome AT miharatakahiro earlyalveolarepithelialcellnecrosisisapotentialdriverofcovid19inducedacuterespiratorydistresssyndrome AT abemiyo earlyalveolarepithelialcellnecrosisisapotentialdriverofcovid19inducedacuterespiratorydistresssyndrome AT nishiimototsugu earlyalveolarepithelialcellnecrosisisapotentialdriverofcovid19inducedacuterespiratorydistresssyndrome AT takeuchiichiro earlyalveolarepithelialcellnecrosisisapotentialdriverofcovid19inducedacuterespiratorydistresssyndrome AT gototakahisa earlyalveolarepithelialcellnecrosisisapotentialdriverofcovid19inducedacuterespiratorydistresssyndrome |