Cargando…
A fully-automated paper ECG digitisation algorithm using deep learning
There is increasing focus on applying deep learning methods to electrocardiograms (ECGs), with recent studies showing that neural networks (NNs) can predict future heart failure or atrial fibrillation from the ECG alone. However, large numbers of ECGs are needed to train NNs, and many ECGs are curre...
Autores principales: | Wu, Huiyi, Patel, Kiran Haresh Kumar, Li, Xinyang, Zhang, Bowen, Galazis, Christoforos, Bajaj, Nikesh, Sau, Arunashis, Shi, Xili, Sun, Lin, Tao, Yanda, Al-Qaysi, Harith, Tarusan, Lawrence, Yasmin, Najira, Grewal, Natasha, Kapoor, Gaurika, Waks, Jonathan W., Kramer, Daniel B., Peters, Nicholas S., Ng, Fu Siong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9722713/ https://www.ncbi.nlm.nih.gov/pubmed/36471089 http://dx.doi.org/10.1038/s41598-022-25284-1 |
Ejemplares similares
-
Information theory-based direct causality measure to assess cardiac fibrillation dynamics
por: Shi, Xili, et al.
Publicado: (2023) -
Hypertrophic cardiomyopathy risk stratification based on clinical or dynamic electrophysiological features: two sides of the same coin
por: Sau, Arunashis, et al.
Publicado: (2023) -
The emerging role of artificial intelligence enabled electrocardiograms in healthcare
por: Sau, Arunashis, et al.
Publicado: (2023) -
Response to letter by Saumarez et al. entitled ‘Regarding the editorial by Sau and Ng. “Hypertrophic cardiomyopathy risk stratification based on clinical or dynamic electrophysiological features: two sides of the same coin”’
por: Sau, Arunashis, et al.
Publicado: (2023) -
Is machine learning the future for atrial fibrillation screening?
por: Sivanandarajah, Pavidra, et al.
Publicado: (2022)