Cargando…
BCR-UNet: Bi-directional ConvLSTM residual U-Net for retinal blood vessel segmentation
BACKGROUND: High precision segmentation of retinal blood vessels from retinal images is a significant step for doctors to diagnose many diseases such as glaucoma and cardiovascular diseases. However, at the peripheral region of vessels, previous U-Net-based segmentation methods failed to significant...
Autores principales: | Yi, Yugen, Guo, Changlu, Hu, Yangtao, Zhou, Wei, Wang, Wenle |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9722738/ https://www.ncbi.nlm.nih.gov/pubmed/36483248 http://dx.doi.org/10.3389/fpubh.2022.1056226 |
Ejemplares similares
-
Prediction of Pollutant Concentration Based on Spatial–Temporal Attention, ResNet and ConvLSTM
por: Chen, Cai, et al.
Publicado: (2023) -
Attention Based CNN-ConvLSTM for Pedestrian Attribute Recognition
por: Li, Yang, et al.
Publicado: (2020) -
Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification
por: Li, Li, et al.
Publicado: (2022) -
Facial expression recognition in videos using hybrid CNN & ConvLSTM
por: Singh, Rajesh, et al.
Publicado: (2023) -
HiC4D: forecasting spatiotemporal Hi-C data with residual ConvLSTM
por: Liu, Tong, et al.
Publicado: (2023)