Cargando…
Curcumin attenuates gentamicin and sodium salicylate ototoxic effects by modulating the nuclear factor-kappaB and apoptotic pathways in rats
This study aimed to investigate the effectiveness of curcumin (CCM) against gentamicin (GEN) and sodium salicylates (NaS)-induced ototoxic effects in rats. For 15 consecutive days, seven rat groups were given 1 mL/rat physiological saline orally, 1 mL/rat olive oil orally, 50 mg/kg bwt CCM orally, 1...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9722864/ https://www.ncbi.nlm.nih.gov/pubmed/35859240 http://dx.doi.org/10.1007/s11356-022-21932-1 |
Sumario: | This study aimed to investigate the effectiveness of curcumin (CCM) against gentamicin (GEN) and sodium salicylates (NaS)-induced ototoxic effects in rats. For 15 consecutive days, seven rat groups were given 1 mL/rat physiological saline orally, 1 mL/rat olive oil orally, 50 mg/kg bwt CCM orally, 120 mg/kg bwt GEN intraperitoneally, 300 mg/kg bwt NaS intraperitoneally, CCM+GEN, or CCM+NaS. The distortion product otoacoustic emission measurements were conducted. The rats’ hearing function and balance have been behaviorally assessed using auditory startle response, Preyer reflex, and beam balance scale tests. The serum lipid peroxidation and oxidative stress biomarkers have been measured. Immunohistochemical investigations of the apoptotic marker caspase-3 and the inflammatory indicator nuclear factor kappa (NF-κB) in cochlear tissues were conducted. GEN and NaS exposure resulted in deficit hearing and impaired ability to retain balance. GEN and NaS exposure significantly decreased the reduced glutathione level and catalase activity but increased malondialdehyde content. GEN and NaS exposure evoked pathological alterations in cochlear and vestibular tissues and increased caspase-3 and NF-κB immunoexpression. CCM significantly counteracted the GEN and NaS injurious effects. These outcomes concluded that CCM could be a naturally efficient therapeutic agent against GEN and NaS-associated ototoxic side effects. GRAPHICAL ABSTRACT: [Image: see text] |
---|