Cargando…
Improving the diagnosis of acute ischemic stroke on non-contrast CT using deep learning: a multicenter study
OBJECTIVE: This study aimed to develop a deep learning (DL) model to improve the diagnostic performance of EIC and ASPECTS in acute ischemic stroke (AIS). METHODS: Acute ischemic stroke patients were retrospectively enrolled from 5 hospitals. We proposed a deep learning model to simultaneously segme...
Autores principales: | Chen, Weidao, Wu, Jiangfen, Wei, Ren, Wu, Shuang, Xia, Chen, Wang, Dawei, Liu, Daliang, Zheng, Longmei, Zou, Tianyu, Li, Ruijiang, Qi, Xianrong, Zhang, Xiaotong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723089/ https://www.ncbi.nlm.nih.gov/pubmed/36471022 http://dx.doi.org/10.1186/s13244-022-01331-3 |
Ejemplares similares
-
Localization of early infarction on non-contrast CT images in acute ischemic stroke with deep learning approach
por: Mohapatra, Sulagna, et al.
Publicado: (2023) -
Deep learning derived automated ASPECTS on non‐contrast CT scans of acute ischemic stroke patients
por: Cao, Zehong, et al.
Publicado: (2022) -
Swin Transformer Improves the IDH Mutation Status Prediction of Gliomas Free of MRI-Based Tumor Segmentation
por: Wu, Jiangfen, et al.
Publicado: (2022) -
Automatic identification of early ischemic lesions on non-contrast CT with deep learning approach
por: Sahoo, Prasan Kumar, et al.
Publicado: (2022) -
Identifying Thrombus on Non-Contrast CT in Patients with Acute Ischemic Stroke
por: Qazi, Shakeel, et al.
Publicado: (2021)