Cargando…
Predicting European cities’ climate mitigation performance using machine learning
Although cities have risen to prominence as climate actors, emissions’ data scarcity has been the primary challenge to evaluating their performance. Here we develop a scalable, replicable machine learning approach for evaluating the mitigation performance for nearly all local administrative areas in...
Autores principales: | Hsu, Angel, Wang, Xuewei, Tan, Jonas, Toh, Wayne, Goyal, Nihit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723121/ https://www.ncbi.nlm.nih.gov/pubmed/36470875 http://dx.doi.org/10.1038/s41467-022-35108-5 |
Ejemplares similares
-
Next-Generation Digital Ecosystem for Climate Data Mining and Knowledge Discovery: A Review of Digital Data Collection Technologies
por: Hsu, Angel, et al.
Publicado: (2020) -
From political pledges to quantitative mapping of climate mitigation plans: Comparison of two European cities
por: Albarus, Ivonne, et al.
Publicado: (2023) -
City-level climate change mitigation in China
por: Shan, Yuli, et al.
Publicado: (2018) -
Climate change impacts on thermal stress in four climatically diverse European cities
por: Katavoutas, George, et al.
Publicado: (2022) -
Performance of urban storm drainage network under changing climate scenarios: Flood mitigation in Indian coastal city
por: Andimuthu, Ramachandran, et al.
Publicado: (2019)