Cargando…
Image feature extraction and recognition model construction of coal and gangue based on image processing technology
Using image recognition technology to realize coal gangue recognition is one of the development directions of intelligent fully mechanized caving mining. Aiming at the problem of low accuracy of coal gangue recognition in fully mechanized caving mining, the extraction method of Coal and gangue image...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723176/ https://www.ncbi.nlm.nih.gov/pubmed/36470904 http://dx.doi.org/10.1038/s41598-022-25496-5 |
Sumario: | Using image recognition technology to realize coal gangue recognition is one of the development directions of intelligent fully mechanized caving mining. Aiming at the problem of low accuracy of coal gangue recognition in fully mechanized caving mining, the extraction method of Coal and gangue images features is proposed, and the corresponding coal gangue recognition model is constructed. The illuminance value is an important factor affecting the imaging quality. Therefore, a multi-light source image acquisition system is designed, and the optimal illuminance value suitable for coal and gangue images acquisition is determined to be 17,130 Lux. There is a large amount of image noise in the gray-sc5ale image, so Gaussian filtering is used to eliminate the noise in the gray-scale image of coal and gangue. Then, six gray-scale features and four texture features are extracted from 900 coal and gangue images respectively. It is concluded that the three kinds of features of gray skewness, gray variance and texture contrast have the highest discrimination on coal and gangue images. Least squares vector machine has a strong ability to classify, so the use of least squares vector machine to achieve coal gangue identification, and build coal gangue identification model. The results show that the recognition accuracy of the model for coal gangue images is 92.2% and 91.5%, respectively, with gray skewness and texture contrast as indicators. This study provides a reliable theoretical support for solving the problem of low recognition rate of coal gangue in fully mechanized caving mining. |
---|