Cargando…
Parkinson's disease is characterized by sub-second resting-state spatio-oscillatory patterns: A contribution from deep convolutional neural network
Deep convolutional neural network (DCNN) provides a multivariate framework to detect relevant spatio-oscillatory patterns in the data beyond common mass-univariate statistics. Yet, its practical application is limited due to the low interpretability of the results beyond accuracy. We opted to use DC...
Autores principales: | Shabanpour, Mehran, Kaboodvand, Neda, Iravani, Behzad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723309/ https://www.ncbi.nlm.nih.gov/pubmed/36451369 http://dx.doi.org/10.1016/j.nicl.2022.103266 |
Ejemplares similares
-
Macroscopic resting state model predicts theta burst stimulation response: A randomized trial
por: Kaboodvand, Neda, et al.
Publicado: (2023) -
Aberrant resting-state oscillatory brain activity in Parkinson's disease patients with visual hallucinations: An MEG source-space study
por: Dauwan, M., et al.
Publicado: (2019) -
Subthalamic oscillatory activity and connectivity during gait in Parkinson's disease
por: Hell, Franz, et al.
Publicado: (2018) -
Respiration modulates oscillatory neural network activity at rest
por: Kluger, Daniel S., et al.
Publicado: (2021) -
Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson’s disease
por: te Woerd, Erik S., et al.
Publicado: (2015)