Cargando…
Advancing brain network models to reconcile functional neuroimaging and clinical research
Functional magnetic resonance imaging (fMRI) captures information on brain function beyond the anatomical alterations that are traditionally visually examined by neuroradiologists. However, the fMRI signals are complex in addition to being noisy, so fMRI still faces limitations for clinical applicat...
Autores principales: | Kobeleva, Xenia, Varoquaux, Gaël, Dagher, Alain, Adhikari, Mohit, Grefkes, Christian, Gilson, Matthieu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723311/ https://www.ncbi.nlm.nih.gov/pubmed/36451365 http://dx.doi.org/10.1016/j.nicl.2022.103262 |
Ejemplares similares
-
Extracting representations of cognition across neuroimaging studies improves brain decoding
por: Mensch, Arthur, et al.
Publicado: (2021) -
How machine learning is shaping cognitive neuroimaging
por: Varoquaux, Gael, et al.
Publicado: (2014) -
Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches
por: Grefkes, Christian, et al.
Publicado: (2011) -
An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings
por: Alves, Pedro Nascimento, et al.
Publicado: (2019) -
Machine learning for neuroimaging with scikit-learn
por: Abraham, Alexandre, et al.
Publicado: (2014)