Cargando…
A forward genetic screen in C. elegans identifies conserved residues of spliceosomal proteins PRP8 and SNRNP200/BRR2 with a role in maintaining 5′ splice site identity
The spliceosome undergoes extensive rearrangements as it assembles onto precursor messenger RNAs. In the earliest assembly step, U1snRNA identifies the 5′ splice site. However, U1snRNA leaves the spliceosome relatively early in assembly, and 5′ splice site identity is subsequently maintained through...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723624/ https://www.ncbi.nlm.nih.gov/pubmed/36321655 http://dx.doi.org/10.1093/nar/gkac991 |
_version_ | 1784844225479704576 |
---|---|
author | Cartwright-Acar, Catiana H Osterhoudt, Kenneth Suzuki, Jessie M N G L Gomez, Destiny R Katzman, Sol Zahler, Alan M |
author_facet | Cartwright-Acar, Catiana H Osterhoudt, Kenneth Suzuki, Jessie M N G L Gomez, Destiny R Katzman, Sol Zahler, Alan M |
author_sort | Cartwright-Acar, Catiana H |
collection | PubMed |
description | The spliceosome undergoes extensive rearrangements as it assembles onto precursor messenger RNAs. In the earliest assembly step, U1snRNA identifies the 5′ splice site. However, U1snRNA leaves the spliceosome relatively early in assembly, and 5′ splice site identity is subsequently maintained through interactions with U6snRNA, protein factor PRP8, and other components during the rearrangements that build the catalytic site. Using a forward genetic screen in Caenorhabditis elegans, we have identified suppressors of a locomotion defect caused by a 5′ss mutation. Here we report three new suppressor alleles from this screen, two in PRP8 and one in SNRNP200/BRR2. mRNASeq studies of these suppressor strains indicate that they also affect specific native alternative 5′ss, especially for suppressor PRP8 D1549N. A strong suppressor at the unstructured N-terminus of SNRNP200, N18K, indicates a novel role for this region. By examining distinct changes in the splicing of native genes, examining double mutants between suppressors, comparing these new suppressors to previously identified splicing suppressors from yeast, and mapping conserved suppressor residues onto cryoEM structural models of assembling human spliceosomes, we conclude that there are multiple interactions at multiple stages in spliceosome assembly responsible for maintaining the initial 5′ss identified by U1snRNA for entry into the catalytic core. |
format | Online Article Text |
id | pubmed-9723624 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-97236242022-12-07 A forward genetic screen in C. elegans identifies conserved residues of spliceosomal proteins PRP8 and SNRNP200/BRR2 with a role in maintaining 5′ splice site identity Cartwright-Acar, Catiana H Osterhoudt, Kenneth Suzuki, Jessie M N G L Gomez, Destiny R Katzman, Sol Zahler, Alan M Nucleic Acids Res RNA and RNA-protein complexes The spliceosome undergoes extensive rearrangements as it assembles onto precursor messenger RNAs. In the earliest assembly step, U1snRNA identifies the 5′ splice site. However, U1snRNA leaves the spliceosome relatively early in assembly, and 5′ splice site identity is subsequently maintained through interactions with U6snRNA, protein factor PRP8, and other components during the rearrangements that build the catalytic site. Using a forward genetic screen in Caenorhabditis elegans, we have identified suppressors of a locomotion defect caused by a 5′ss mutation. Here we report three new suppressor alleles from this screen, two in PRP8 and one in SNRNP200/BRR2. mRNASeq studies of these suppressor strains indicate that they also affect specific native alternative 5′ss, especially for suppressor PRP8 D1549N. A strong suppressor at the unstructured N-terminus of SNRNP200, N18K, indicates a novel role for this region. By examining distinct changes in the splicing of native genes, examining double mutants between suppressors, comparing these new suppressors to previously identified splicing suppressors from yeast, and mapping conserved suppressor residues onto cryoEM structural models of assembling human spliceosomes, we conclude that there are multiple interactions at multiple stages in spliceosome assembly responsible for maintaining the initial 5′ss identified by U1snRNA for entry into the catalytic core. Oxford University Press 2022-11-02 /pmc/articles/PMC9723624/ /pubmed/36321655 http://dx.doi.org/10.1093/nar/gkac991 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | RNA and RNA-protein complexes Cartwright-Acar, Catiana H Osterhoudt, Kenneth Suzuki, Jessie M N G L Gomez, Destiny R Katzman, Sol Zahler, Alan M A forward genetic screen in C. elegans identifies conserved residues of spliceosomal proteins PRP8 and SNRNP200/BRR2 with a role in maintaining 5′ splice site identity |
title | A forward genetic screen in C. elegans identifies conserved residues of spliceosomal proteins PRP8 and SNRNP200/BRR2 with a role in maintaining 5′ splice site identity |
title_full | A forward genetic screen in C. elegans identifies conserved residues of spliceosomal proteins PRP8 and SNRNP200/BRR2 with a role in maintaining 5′ splice site identity |
title_fullStr | A forward genetic screen in C. elegans identifies conserved residues of spliceosomal proteins PRP8 and SNRNP200/BRR2 with a role in maintaining 5′ splice site identity |
title_full_unstemmed | A forward genetic screen in C. elegans identifies conserved residues of spliceosomal proteins PRP8 and SNRNP200/BRR2 with a role in maintaining 5′ splice site identity |
title_short | A forward genetic screen in C. elegans identifies conserved residues of spliceosomal proteins PRP8 and SNRNP200/BRR2 with a role in maintaining 5′ splice site identity |
title_sort | forward genetic screen in c. elegans identifies conserved residues of spliceosomal proteins prp8 and snrnp200/brr2 with a role in maintaining 5′ splice site identity |
topic | RNA and RNA-protein complexes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723624/ https://www.ncbi.nlm.nih.gov/pubmed/36321655 http://dx.doi.org/10.1093/nar/gkac991 |
work_keys_str_mv | AT cartwrightacarcatianah aforwardgeneticscreenincelegansidentifiesconservedresiduesofspliceosomalproteinsprp8andsnrnp200brr2witharoleinmaintaining5splicesiteidentity AT osterhoudtkenneth aforwardgeneticscreenincelegansidentifiesconservedresiduesofspliceosomalproteinsprp8andsnrnp200brr2witharoleinmaintaining5splicesiteidentity AT suzukijessiemngl aforwardgeneticscreenincelegansidentifiesconservedresiduesofspliceosomalproteinsprp8andsnrnp200brr2witharoleinmaintaining5splicesiteidentity AT gomezdestinyr aforwardgeneticscreenincelegansidentifiesconservedresiduesofspliceosomalproteinsprp8andsnrnp200brr2witharoleinmaintaining5splicesiteidentity AT katzmansol aforwardgeneticscreenincelegansidentifiesconservedresiduesofspliceosomalproteinsprp8andsnrnp200brr2witharoleinmaintaining5splicesiteidentity AT zahleralanm aforwardgeneticscreenincelegansidentifiesconservedresiduesofspliceosomalproteinsprp8andsnrnp200brr2witharoleinmaintaining5splicesiteidentity AT cartwrightacarcatianah forwardgeneticscreenincelegansidentifiesconservedresiduesofspliceosomalproteinsprp8andsnrnp200brr2witharoleinmaintaining5splicesiteidentity AT osterhoudtkenneth forwardgeneticscreenincelegansidentifiesconservedresiduesofspliceosomalproteinsprp8andsnrnp200brr2witharoleinmaintaining5splicesiteidentity AT suzukijessiemngl forwardgeneticscreenincelegansidentifiesconservedresiduesofspliceosomalproteinsprp8andsnrnp200brr2witharoleinmaintaining5splicesiteidentity AT gomezdestinyr forwardgeneticscreenincelegansidentifiesconservedresiduesofspliceosomalproteinsprp8andsnrnp200brr2witharoleinmaintaining5splicesiteidentity AT katzmansol forwardgeneticscreenincelegansidentifiesconservedresiduesofspliceosomalproteinsprp8andsnrnp200brr2witharoleinmaintaining5splicesiteidentity AT zahleralanm forwardgeneticscreenincelegansidentifiesconservedresiduesofspliceosomalproteinsprp8andsnrnp200brr2witharoleinmaintaining5splicesiteidentity |