Cargando…

Enhanced exon skipping and prolonged dystrophin restoration achieved by TfR1-targeted delivery of antisense oligonucleotide using FORCE conjugation in mdx mice

Current therapies for Duchenne muscular dystrophy (DMD) use phosphorodiamidate morpholino oligomers (PMO) to induce exon skipping in the dystrophin pre-mRNA, enabling the translation of a shortened but functional dystrophin protein. This strategy has been hampered by insufficient delivery of PMO to...

Descripción completa

Detalles Bibliográficos
Autores principales: Desjardins, Cody A, Yao, Monica, Hall, John, O’Donnell, Emma, Venkatesan, Reshmii, Spring, Sean, Wen, Aiyun, Hsia, Nelson, Shen, Peiyi, Russo, Ryan, Lan, Bo, Picariello, Tyler, Tang, Kim, Weeden, Timothy, Zanotti, Stefano, Subramanian, Romesh, Ibraghimov-Beskrovnaya, Oxana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723632/
https://www.ncbi.nlm.nih.gov/pubmed/35944903
http://dx.doi.org/10.1093/nar/gkac641
_version_ 1784844227307372544
author Desjardins, Cody A
Yao, Monica
Hall, John
O’Donnell, Emma
Venkatesan, Reshmii
Spring, Sean
Wen, Aiyun
Hsia, Nelson
Shen, Peiyi
Russo, Ryan
Lan, Bo
Picariello, Tyler
Tang, Kim
Weeden, Timothy
Zanotti, Stefano
Subramanian, Romesh
Ibraghimov-Beskrovnaya, Oxana
author_facet Desjardins, Cody A
Yao, Monica
Hall, John
O’Donnell, Emma
Venkatesan, Reshmii
Spring, Sean
Wen, Aiyun
Hsia, Nelson
Shen, Peiyi
Russo, Ryan
Lan, Bo
Picariello, Tyler
Tang, Kim
Weeden, Timothy
Zanotti, Stefano
Subramanian, Romesh
Ibraghimov-Beskrovnaya, Oxana
author_sort Desjardins, Cody A
collection PubMed
description Current therapies for Duchenne muscular dystrophy (DMD) use phosphorodiamidate morpholino oligomers (PMO) to induce exon skipping in the dystrophin pre-mRNA, enabling the translation of a shortened but functional dystrophin protein. This strategy has been hampered by insufficient delivery of PMO to cardiac and skeletal muscle. To overcome these limitations, we developed the FORCE(TM) platform consisting of an antigen-binding fragment, which binds the transferrin receptor 1, conjugated to an oligonucleotide. We demonstrate that a single dose of the mouse-specific FORCE–M23D conjugate enhances muscle delivery of exon skipping PMO (M23D) in mdx mice, achieving dose-dependent and robust exon skipping and durable dystrophin restoration. FORCE–M23D-induced dystrophin expression reached peaks of 51%, 72%, 62%, 90% and 77%, of wild-type levels in quadriceps, tibialis anterior, gastrocnemius, diaphragm, and heart, respectively, with a single 30 mg/kg PMO-equivalent dose. The shortened dystrophin localized to the sarcolemma, indicating expression of a functional protein. Conversely, a single 30 mg/kg dose of unconjugated M23D displayed poor muscle delivery resulting in marginal levels of exon skipping and dystrophin expression. Importantly, FORCE–M23D treatment resulted in improved functional outcomes compared with administration of unconjugated M23D. Our results suggest that FORCE conjugates are a potentially effective approach for the treatment of DMD.
format Online
Article
Text
id pubmed-9723632
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-97236322022-12-07 Enhanced exon skipping and prolonged dystrophin restoration achieved by TfR1-targeted delivery of antisense oligonucleotide using FORCE conjugation in mdx mice Desjardins, Cody A Yao, Monica Hall, John O’Donnell, Emma Venkatesan, Reshmii Spring, Sean Wen, Aiyun Hsia, Nelson Shen, Peiyi Russo, Ryan Lan, Bo Picariello, Tyler Tang, Kim Weeden, Timothy Zanotti, Stefano Subramanian, Romesh Ibraghimov-Beskrovnaya, Oxana Nucleic Acids Res NAR Breakthrough Article Current therapies for Duchenne muscular dystrophy (DMD) use phosphorodiamidate morpholino oligomers (PMO) to induce exon skipping in the dystrophin pre-mRNA, enabling the translation of a shortened but functional dystrophin protein. This strategy has been hampered by insufficient delivery of PMO to cardiac and skeletal muscle. To overcome these limitations, we developed the FORCE(TM) platform consisting of an antigen-binding fragment, which binds the transferrin receptor 1, conjugated to an oligonucleotide. We demonstrate that a single dose of the mouse-specific FORCE–M23D conjugate enhances muscle delivery of exon skipping PMO (M23D) in mdx mice, achieving dose-dependent and robust exon skipping and durable dystrophin restoration. FORCE–M23D-induced dystrophin expression reached peaks of 51%, 72%, 62%, 90% and 77%, of wild-type levels in quadriceps, tibialis anterior, gastrocnemius, diaphragm, and heart, respectively, with a single 30 mg/kg PMO-equivalent dose. The shortened dystrophin localized to the sarcolemma, indicating expression of a functional protein. Conversely, a single 30 mg/kg dose of unconjugated M23D displayed poor muscle delivery resulting in marginal levels of exon skipping and dystrophin expression. Importantly, FORCE–M23D treatment resulted in improved functional outcomes compared with administration of unconjugated M23D. Our results suggest that FORCE conjugates are a potentially effective approach for the treatment of DMD. Oxford University Press 2022-08-10 /pmc/articles/PMC9723632/ /pubmed/35944903 http://dx.doi.org/10.1093/nar/gkac641 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle NAR Breakthrough Article
Desjardins, Cody A
Yao, Monica
Hall, John
O’Donnell, Emma
Venkatesan, Reshmii
Spring, Sean
Wen, Aiyun
Hsia, Nelson
Shen, Peiyi
Russo, Ryan
Lan, Bo
Picariello, Tyler
Tang, Kim
Weeden, Timothy
Zanotti, Stefano
Subramanian, Romesh
Ibraghimov-Beskrovnaya, Oxana
Enhanced exon skipping and prolonged dystrophin restoration achieved by TfR1-targeted delivery of antisense oligonucleotide using FORCE conjugation in mdx mice
title Enhanced exon skipping and prolonged dystrophin restoration achieved by TfR1-targeted delivery of antisense oligonucleotide using FORCE conjugation in mdx mice
title_full Enhanced exon skipping and prolonged dystrophin restoration achieved by TfR1-targeted delivery of antisense oligonucleotide using FORCE conjugation in mdx mice
title_fullStr Enhanced exon skipping and prolonged dystrophin restoration achieved by TfR1-targeted delivery of antisense oligonucleotide using FORCE conjugation in mdx mice
title_full_unstemmed Enhanced exon skipping and prolonged dystrophin restoration achieved by TfR1-targeted delivery of antisense oligonucleotide using FORCE conjugation in mdx mice
title_short Enhanced exon skipping and prolonged dystrophin restoration achieved by TfR1-targeted delivery of antisense oligonucleotide using FORCE conjugation in mdx mice
title_sort enhanced exon skipping and prolonged dystrophin restoration achieved by tfr1-targeted delivery of antisense oligonucleotide using force conjugation in mdx mice
topic NAR Breakthrough Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723632/
https://www.ncbi.nlm.nih.gov/pubmed/35944903
http://dx.doi.org/10.1093/nar/gkac641
work_keys_str_mv AT desjardinscodya enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT yaomonica enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT halljohn enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT odonnellemma enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT venkatesanreshmii enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT springsean enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT wenaiyun enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT hsianelson enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT shenpeiyi enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT russoryan enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT lanbo enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT picariellotyler enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT tangkim enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT weedentimothy enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT zanottistefano enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT subramanianromesh enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice
AT ibraghimovbeskrovnayaoxana enhancedexonskippingandprolongeddystrophinrestorationachievedbytfr1targeteddeliveryofantisenseoligonucleotideusingforceconjugationinmdxmice