Cargando…
Particle-associated bacteria differentially influence the aggregation of the marine diatom Minutocellus polymorphus
The aggregation of phytoplankton leads to the settling of particulate organic carbon in the form of marine snow, making it an important process in marine biogeochemical cycles. Diatoms >20 µm in size are considered to contribute appreciably to sinking particle fluxes due to aggregation and the pr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723735/ https://www.ncbi.nlm.nih.gov/pubmed/37938280 http://dx.doi.org/10.1038/s43705-022-00146-z |
Sumario: | The aggregation of phytoplankton leads to the settling of particulate organic carbon in the form of marine snow, making it an important process in marine biogeochemical cycles. Diatoms >20 µm in size are considered to contribute appreciably to sinking particle fluxes due to aggregation and the production of transparent exopolymeric particles (TEP), the matrix for marine snow aggregates; however, it is not known whether nano-sized (2–20 µm) diatoms are able to aggregate and produce TEP. Here, we tested the aggregation and production of TEP by the nano-diatom Minutocellus polymorphus and investigated if interactions with bacteria influence aggregation by comparing axenic M. polymorphus cultures with co-cultures of the diatom with bacterial taxa known to colonize marine snow particles. We found that M. polymorphus form sinking aggregates and produce TEP comparably to other phytoplankton groups and that aggregation and TEP production were influenced depending on the species of bacteria added. Aggregation was enhanced in the presence of Marinobacter adhaerens HP15, but not in the presence of Pseudoalteromonas carrageenovora or Vibrio thalassae. Cell aggregation mediated by interactions with specific bacterial species are possible mechanisms behind the export of nano-sized diatoms, such as M. polymorphus, especially in oligotrophic open ocean regions where small phytoplankton dominate. |
---|