Cargando…
Phytoplankton biodiversity and the inverted paradox
Earth’s aquatic food webs are overwhelmingly supported by planktonic microalgae that live in the sunlit water column where only a minimum number of physical niches are readily identifiable. Despite this paucity of environmental differentiation, these “phytoplankton” populations exhibit a rich biodiv...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723737/ https://www.ncbi.nlm.nih.gov/pubmed/36750580 http://dx.doi.org/10.1038/s43705-021-00056-6 |
Sumario: | Earth’s aquatic food webs are overwhelmingly supported by planktonic microalgae that live in the sunlit water column where only a minimum number of physical niches are readily identifiable. Despite this paucity of environmental differentiation, these “phytoplankton” populations exhibit a rich biodiversity, an observation not easily reconciled with broadly accepted rules of resource-based competitive exclusion. This conundrum is referred to as the “Paradox of the Plankton”. Consideration of physical distancing between nutrient depletion zones around individual phytoplankton, however, suggests a competition-neutral resource landscape. Application of neutral theory to the sheer number of phytoplankton in physically-mixed water masses yields a prediction of astronomical biodiversity, suggesting the inverted paradox: Why are there so few phytoplankton species? Here, we introduce a trophic constraint on phytoplankton that, when combined with stochastic principals of ecological drift, predicts only modest levels of diversity in an otherwise competition-neutral landscape. Our “trophic exclusion” principle predicts diversity to be independent of population size and yields a species richness across cell-size classes that is consistent with broad oceanographic survey observations. |
---|