Cargando…
Role of Ni in PtNi Bimetallic Electrocatalysts for Hydrogen and Value-Added Chemicals Coproduction via Glycerol Electrooxidation
[Image: see text] Pt-based bimetallic electrocatalysts are promising candidates to convert surplus glycerol from the biodiesel industry to value-added chemicals and coproduce hydrogen. It is expected that the nature and content of the elements in the bimetallic catalyst can not only affect the react...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724082/ https://www.ncbi.nlm.nih.gov/pubmed/36504912 http://dx.doi.org/10.1021/acscatal.2c03907 |
_version_ | 1784844332585451520 |
---|---|
author | Luo, Hui Yukuhiro, Victor Y. Fernández, Pablo S. Feng, Jingyu Thompson, Paul Rao, Reshma R. Cai, Rongsheng Favero, Silvia Haigh, Sarah J. Durrant, James R. Stephens, Ifan E. L. Titirici, Maria-Magdalena |
author_facet | Luo, Hui Yukuhiro, Victor Y. Fernández, Pablo S. Feng, Jingyu Thompson, Paul Rao, Reshma R. Cai, Rongsheng Favero, Silvia Haigh, Sarah J. Durrant, James R. Stephens, Ifan E. L. Titirici, Maria-Magdalena |
author_sort | Luo, Hui |
collection | PubMed |
description | [Image: see text] Pt-based bimetallic electrocatalysts are promising candidates to convert surplus glycerol from the biodiesel industry to value-added chemicals and coproduce hydrogen. It is expected that the nature and content of the elements in the bimetallic catalyst can not only affect the reaction kinetics but also influence the product selectivity, providing a way to increase the yield of the desired products. Hence, in this work, we investigate the electrochemical oxidation of glycerol on a series of PtNi nanoparticles with increasing Ni content using a combination of physicochemical structural analysis, electrochemical measurements, operando spectroscopic techniques, and advanced product characterizations. With a moderate Ni content and a homogenously alloyed bimetallic Pt–Ni structure, the PtNi2 catalyst displayed the highest reaction activity among all materials studied in this work. In situ FTIR data show that PtNi2 can activate the glycerol molecule at a more negative potential (0.4 V(RHE)) than the other PtNi catalysts. In addition, its surface can effectively catalyze the complete C–C bond cleavage, resulting in lower CO poisoning and higher stability. Operando X-ray absorption spectroscopy and UV–vis spectroscopy suggest that glycerol adsorbs strongly onto surface Ni(OH)(x) sites, preventing their oxidation and activation of oxygen or hydroxyl from water. As such, we propose that the role of Ni in PtNi toward glycerol oxidation is to tailor the electronic structure of the pure Pt sites rather than a bifunctional mechanism. Our experiments provide guidance for the development of bimetallic catalysts toward highly efficient, selective, and stable glycerol oxidation reactions. |
format | Online Article Text |
id | pubmed-9724082 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-97240822022-12-07 Role of Ni in PtNi Bimetallic Electrocatalysts for Hydrogen and Value-Added Chemicals Coproduction via Glycerol Electrooxidation Luo, Hui Yukuhiro, Victor Y. Fernández, Pablo S. Feng, Jingyu Thompson, Paul Rao, Reshma R. Cai, Rongsheng Favero, Silvia Haigh, Sarah J. Durrant, James R. Stephens, Ifan E. L. Titirici, Maria-Magdalena ACS Catal [Image: see text] Pt-based bimetallic electrocatalysts are promising candidates to convert surplus glycerol from the biodiesel industry to value-added chemicals and coproduce hydrogen. It is expected that the nature and content of the elements in the bimetallic catalyst can not only affect the reaction kinetics but also influence the product selectivity, providing a way to increase the yield of the desired products. Hence, in this work, we investigate the electrochemical oxidation of glycerol on a series of PtNi nanoparticles with increasing Ni content using a combination of physicochemical structural analysis, electrochemical measurements, operando spectroscopic techniques, and advanced product characterizations. With a moderate Ni content and a homogenously alloyed bimetallic Pt–Ni structure, the PtNi2 catalyst displayed the highest reaction activity among all materials studied in this work. In situ FTIR data show that PtNi2 can activate the glycerol molecule at a more negative potential (0.4 V(RHE)) than the other PtNi catalysts. In addition, its surface can effectively catalyze the complete C–C bond cleavage, resulting in lower CO poisoning and higher stability. Operando X-ray absorption spectroscopy and UV–vis spectroscopy suggest that glycerol adsorbs strongly onto surface Ni(OH)(x) sites, preventing their oxidation and activation of oxygen or hydroxyl from water. As such, we propose that the role of Ni in PtNi toward glycerol oxidation is to tailor the electronic structure of the pure Pt sites rather than a bifunctional mechanism. Our experiments provide guidance for the development of bimetallic catalysts toward highly efficient, selective, and stable glycerol oxidation reactions. American Chemical Society 2022-11-10 2022-12-02 /pmc/articles/PMC9724082/ /pubmed/36504912 http://dx.doi.org/10.1021/acscatal.2c03907 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Luo, Hui Yukuhiro, Victor Y. Fernández, Pablo S. Feng, Jingyu Thompson, Paul Rao, Reshma R. Cai, Rongsheng Favero, Silvia Haigh, Sarah J. Durrant, James R. Stephens, Ifan E. L. Titirici, Maria-Magdalena Role of Ni in PtNi Bimetallic Electrocatalysts for Hydrogen and Value-Added Chemicals Coproduction via Glycerol Electrooxidation |
title | Role of Ni in PtNi Bimetallic Electrocatalysts for
Hydrogen and Value-Added Chemicals Coproduction via Glycerol Electrooxidation |
title_full | Role of Ni in PtNi Bimetallic Electrocatalysts for
Hydrogen and Value-Added Chemicals Coproduction via Glycerol Electrooxidation |
title_fullStr | Role of Ni in PtNi Bimetallic Electrocatalysts for
Hydrogen and Value-Added Chemicals Coproduction via Glycerol Electrooxidation |
title_full_unstemmed | Role of Ni in PtNi Bimetallic Electrocatalysts for
Hydrogen and Value-Added Chemicals Coproduction via Glycerol Electrooxidation |
title_short | Role of Ni in PtNi Bimetallic Electrocatalysts for
Hydrogen and Value-Added Chemicals Coproduction via Glycerol Electrooxidation |
title_sort | role of ni in ptni bimetallic electrocatalysts for
hydrogen and value-added chemicals coproduction via glycerol electrooxidation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724082/ https://www.ncbi.nlm.nih.gov/pubmed/36504912 http://dx.doi.org/10.1021/acscatal.2c03907 |
work_keys_str_mv | AT luohui roleofniinptnibimetallicelectrocatalystsforhydrogenandvalueaddedchemicalscoproductionviaglycerolelectrooxidation AT yukuhirovictory roleofniinptnibimetallicelectrocatalystsforhydrogenandvalueaddedchemicalscoproductionviaglycerolelectrooxidation AT fernandezpablos roleofniinptnibimetallicelectrocatalystsforhydrogenandvalueaddedchemicalscoproductionviaglycerolelectrooxidation AT fengjingyu roleofniinptnibimetallicelectrocatalystsforhydrogenandvalueaddedchemicalscoproductionviaglycerolelectrooxidation AT thompsonpaul roleofniinptnibimetallicelectrocatalystsforhydrogenandvalueaddedchemicalscoproductionviaglycerolelectrooxidation AT raoreshmar roleofniinptnibimetallicelectrocatalystsforhydrogenandvalueaddedchemicalscoproductionviaglycerolelectrooxidation AT cairongsheng roleofniinptnibimetallicelectrocatalystsforhydrogenandvalueaddedchemicalscoproductionviaglycerolelectrooxidation AT faverosilvia roleofniinptnibimetallicelectrocatalystsforhydrogenandvalueaddedchemicalscoproductionviaglycerolelectrooxidation AT haighsarahj roleofniinptnibimetallicelectrocatalystsforhydrogenandvalueaddedchemicalscoproductionviaglycerolelectrooxidation AT durrantjamesr roleofniinptnibimetallicelectrocatalystsforhydrogenandvalueaddedchemicalscoproductionviaglycerolelectrooxidation AT stephensifanel roleofniinptnibimetallicelectrocatalystsforhydrogenandvalueaddedchemicalscoproductionviaglycerolelectrooxidation AT titiricimariamagdalena roleofniinptnibimetallicelectrocatalystsforhydrogenandvalueaddedchemicalscoproductionviaglycerolelectrooxidation |