Cargando…
A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique
BACKGROUND: Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its prim...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724328/ https://www.ncbi.nlm.nih.gov/pubmed/36471389 http://dx.doi.org/10.1186/s13071-022-05522-1 |
_version_ | 1784844389422465024 |
---|---|
author | Vorsino, Adam E. Xi, Zhiyong |
author_facet | Vorsino, Adam E. Xi, Zhiyong |
author_sort | Vorsino, Adam E. |
collection | PubMed |
description | BACKGROUND: Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. METHODS: The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. RESULTS: As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. CONCLUSIONS: Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. GRAPHIC ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13071-022-05522-1. |
format | Online Article Text |
id | pubmed-9724328 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-97243282022-12-07 A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique Vorsino, Adam E. Xi, Zhiyong Parasit Vectors Research BACKGROUND: Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. METHODS: The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. RESULTS: As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. CONCLUSIONS: Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. GRAPHIC ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13071-022-05522-1. BioMed Central 2022-12-05 /pmc/articles/PMC9724328/ /pubmed/36471389 http://dx.doi.org/10.1186/s13071-022-05522-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Vorsino, Adam E. Xi, Zhiyong A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique |
title | A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique |
title_full | A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique |
title_fullStr | A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique |
title_full_unstemmed | A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique |
title_short | A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique |
title_sort | mass rearing cost calculator for the control of culex quinquefasciatus in hawaiʻi using the incompatible insect technique |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724328/ https://www.ncbi.nlm.nih.gov/pubmed/36471389 http://dx.doi.org/10.1186/s13071-022-05522-1 |
work_keys_str_mv | AT vorsinoadame amassrearingcostcalculatorforthecontrolofculexquinquefasciatusinhawaiʻiusingtheincompatibleinsecttechnique AT xizhiyong amassrearingcostcalculatorforthecontrolofculexquinquefasciatusinhawaiʻiusingtheincompatibleinsecttechnique AT vorsinoadame massrearingcostcalculatorforthecontrolofculexquinquefasciatusinhawaiʻiusingtheincompatibleinsecttechnique AT xizhiyong massrearingcostcalculatorforthecontrolofculexquinquefasciatusinhawaiʻiusingtheincompatibleinsecttechnique |