Cargando…
Long-distance dependency combined multi-hop graph neural networks for protein–protein interactions prediction
BACKGROUND: Protein–protein interactions are widespread in biological systems and play an important role in cell biology. Since traditional laboratory-based methods have some drawbacks, such as time-consuming, money-consuming, etc., a large number of methods based on deep learning have emerged. Howe...
Autores principales: | Zhong, Wen, He, Changxiang, Xiao, Chen, Liu, Yuru, Qin, Xiaofei, Yu, Zhensheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724439/ https://www.ncbi.nlm.nih.gov/pubmed/36471248 http://dx.doi.org/10.1186/s12859-022-05062-6 |
Ejemplares similares
-
Multi-type feature fusion based on graph neural network for drug-drug interaction prediction
por: He, Changxiang, et al.
Publicado: (2022) -
Edge-Aware Graph Neural Network for Multi-Hop Path Reasoning over Knowledge Base
por: Zhang, Yanan, et al.
Publicado: (2022) -
IMF: Interpretable Multi-Hop Forecasting on Temporal Knowledge Graphs
por: Du, Zhenyu, et al.
Publicado: (2023) -
Performance Analysis of Millimeter-Wave Multi-hop Machine-to-Machine Networks Based on Hop Distance Statistics
por: Jung, Haejoon, et al.
Publicado: (2018) -
Prediction of protein–protein interaction using graph neural networks
por: Jha, Kanchan, et al.
Publicado: (2022)