Cargando…
Hallucinating symmetric protein assemblies
Deep learning generative approaches provide an opportunity to broadly explore protein structure space beyond the sequences and structures of natural proteins. Here we use deep network hallucination to generate a wide range of symmetric protein homo-oligomers given only a specification of the number...
Autores principales: | Wicky, B. I. M., Milles, L. F., Courbet, A., Ragotte, R. J., Dauparas, J., Kinfu, E., Tipps, S., Kibler, R. D., Baek, M., DiMaio, F., Li, X., Carter, L., Kang, A., Nguyen, H., Bera, A. K., Baker, D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9724707/ https://www.ncbi.nlm.nih.gov/pubmed/36108048 http://dx.doi.org/10.1126/science.add1964 |
Ejemplares similares
-
Hallucination of closed repeat proteins containing central pockets
por: An, Linna, et al.
Publicado: (2023) -
Robust deep learning based protein sequence design using ProteinMPNN
por: Dauparas, J., et al.
Publicado: (2022) -
Scaffolding protein functional sites using deep
learning
por: Wang, Jue, et al.
Publicado: (2022) -
Modeling Symmetric Macromolecular Structures in Rosetta3
por: DiMaio, Frank, et al.
Publicado: (2011) -
De novo design of protein structure and function with RFdiffusion
por: Watson, Joseph L., et al.
Publicado: (2023)