Cargando…
Epileptic Seizure Detection Using a Hybrid 1D CNN-Machine Learning Approach from EEG Data
Electroencephalography (EEG) is a widely used technique for the detection of epileptic seizures. It can be recorded in a noninvasive manner to present the electrical activity of the brain. The visual inspection of nonlinear and highly complex EEG signals is both costly and time-consuming. Therefore,...
Autores principales: | Hassan, Fatima, Hussain, Syed Fawad, Qaisar, Saeed Mian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726261/ https://www.ncbi.nlm.nih.gov/pubmed/36483658 http://dx.doi.org/10.1155/2022/9579422 |
Ejemplares similares
-
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018) -
Enhanced Feature Extraction-based CNN Approach for Epileptic Seizure Detection from EEG Signals
por: Dhar, Puja, et al.
Publicado: (2022) -
An automated detection of epileptic seizures EEG using CNN classifier based on feature fusion with high accuracy
por: Chen, Wenna, et al.
Publicado: (2023) -
Retracted: Enhanced Feature Extraction-Based CNN Approach for Epileptic Seizure Detection from EEG Signals
por: Healthcare Engineering, Journal of
Publicado: (2023) -
Epileptic Seizure Detection with Hybrid Time-Frequency EEG Input: A Deep Learning Approach
por: Pan, Yayan, et al.
Publicado: (2022)