Cargando…

Particle exposure risk to a lavatory user after flushing a squat toilet

Squat toilets are widely used in developing countries due to local customs and low costs. The flushing of a squat toilet can entrain strong airflow and produce aerosols. This investigation constructed a lavatory mock-up with a squat toilet. The flushing-induced airflow was both visualized and quanti...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Tengfei (Tim), Yao, Lifang, Gao, Zilong, Wang, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726816/
https://www.ncbi.nlm.nih.gov/pubmed/36473899
http://dx.doi.org/10.1038/s41598-022-25106-4
Descripción
Sumario:Squat toilets are widely used in developing countries due to local customs and low costs. The flushing of a squat toilet can entrain strong airflow and produce aerosols. This investigation constructed a lavatory mock-up with a squat toilet. The flushing-induced airflow was both visualized and quantitatively measured by particle image velocimetry. The maximum height of the impacted airflow was identified by an ultrasonic anemometer. For inference of the particle emission rate, the toilet bowl was covered by an enclosed box for particle concentration measurement. The risks from skin contact of the deposited particles on the flushing button and the door handle and the possible inhalation of the released aerosols were evaluated. The results revealed that flushing a squat toilet can drive toilet plume to rise up to 0.9 m above the toilet bowl. A single flushing process can produce 0.29 million particles with diameters greater than 0.3 μm, among which 90% of the particles are submicron-sized. The flushing may cause particles to deposit on the flushing button and lavatory door handle as well as inhalation exposure even remaining in the lavatory for half a minute after flushing, especially for those lavatory users whose respiratory zones are below 1.0 m.