Cargando…
Dual attentive fusion for EEG-based brain-computer interfaces
The classification based on Electroencephalogram (EEG) is a challenging task in the brain-computer interface (BCI) field due to data with a low signal-to-noise ratio. Most current deep learning based studies in this challenge focus on designing a desired convolutional neural network (CNN) to learn a...
Autores principales: | Du, Yuanhua, Huang, Jian, Huang, Xiuyu, Shi, Kaibo, Zhou, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727253/ https://www.ncbi.nlm.nih.gov/pubmed/36507325 http://dx.doi.org/10.3389/fnins.2022.1044631 |
Ejemplares similares
-
A novel brain-computer interface based on audio-assisted visual evoked EEG and spatial-temporal attention CNN
por: Chen, Guijun, et al.
Publicado: (2022) -
Decoding the EEG patterns induced by sequential finger movement for brain-computer interfaces
por: Liu, Chang, et al.
Publicado: (2023) -
Status of deep learning for EEG-based brain–computer interface applications
por: Hossain, Khondoker Murad, et al.
Publicado: (2023) -
EEG-based vibrotactile evoked brain-computer interfaces system: A systematic review
por: Huang, Xiuyu, et al.
Publicado: (2022) -
EEG-TNet: An End-To-End Brain Computer Interface Framework for Mental Workload Estimation
por: Fan, Chaojie, et al.
Publicado: (2022)