Cargando…
Adaptive granularity in tensors: A quest for interpretable structure
Data collected at very frequent intervals is usually extremely sparse and has no structure that is exploitable by modern tensor decomposition algorithms. Thus, the utility of such tensors is low, in terms of the amount of interpretable and exploitable structure that one can extract from them. In thi...
Autores principales: | Pasricha, Ravdeep S., Gujral, Ekta, Papalexakis, Evangelos E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727254/ https://www.ncbi.nlm.nih.gov/pubmed/36505975 http://dx.doi.org/10.3389/fdata.2022.929511 |
Ejemplares similares
-
Structural Compression of Convolutional Neural Networks with Applications in Interpretability
por: Abbasi-Asl, Reza, et al.
Publicado: (2021) -
Machine Learning and Artificial Intelligence: Two Fellow Travelers on the Quest for Intelligent Behavior in Machines
por: Kersting, Kristian
Publicado: (2018) -
CLUE: A Fast Parallel Clustering Algorithm for High Granularity Calorimeters in High-Energy Physics
por: Rovere, Marco, et al.
Publicado: (2020) -
Editorial: Human-Interpretable Machine Learning
por: Tolomei, Gabriele, et al.
Publicado: (2022) -
Topic Modeling for Interpretable Text Classification From EHRs
por: Rijcken, Emil, et al.
Publicado: (2022)