Cargando…

A Comparative Evaluation of Cancer Classification via TP53 Gene Mutations Using Machin Learning

OBJECTIVE: Cancer is one of the horrendous diseases. Classifying cancer is founded on identifying cancer-causing mutations in gene sequences. Although genetic analysis can predict certain types of cancer, there is currently no effective method for predicting cancers. Therefore, the purpose of this p...

Descripción completa

Detalles Bibliográficos
Autores principales: Mikhail, Dina Yousif, Al-Mukhtar, Firas H., Kareem, Shahab Wahab
Formato: Online Artículo Texto
Lenguaje:English
Publicado: West Asia Organization for Cancer Prevention 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727340/
https://www.ncbi.nlm.nih.gov/pubmed/35901354
http://dx.doi.org/10.31557/APJCP.2022.23.7.2459
_version_ 1784844994208595968
author Mikhail, Dina Yousif
Al-Mukhtar, Firas H.
Kareem, Shahab Wahab
author_facet Mikhail, Dina Yousif
Al-Mukhtar, Firas H.
Kareem, Shahab Wahab
author_sort Mikhail, Dina Yousif
collection PubMed
description OBJECTIVE: Cancer is one of the horrendous diseases. Classifying cancer is founded on identifying cancer-causing mutations in gene sequences. Although genetic analysis can predict certain types of cancer, there is currently no effective method for predicting cancers. Therefore, the purpose of this paper is to predict the cancer types and to find a data mining technique that uses two different machine learning algorithms for classifying cancer. Moreover, earlier detection of the mutated tumor protein P53 gene can predict treatment and gene therapy techniques. METHODS: (UMD-2010) the Universal Mutation Database is used to diagnose mutations in genes. The challenge, however, is that the database very basic. Besides, it is an excel format database. Due to its limitations, the data base cannot be used to classify cancer. In addition, bioinformatics techniques such as pairwise alignment and BLAST are used, followed by machine learning algorithms that use neural network algorithms to classify cancer based on malignant mutations in the TP53 gene, by selecting (12) out of (53) database fields for the TP53 gene database in the second stage. It should be noted that the (UMDCell-line2010) database does not have one of these twelve fields (Field of gene locus). RESULT: As a Utilizing MLP and SVM for training and testing a set number of fields, the Machin learning methods were found to be an effective way to classify cancers. Where the Relative Absolute Error for MLP and SVM is 83.6005 % ,65.6605 %, the accuracy is 90 %, 93.7% respectively. CONCLUSION: Following the learning and testing stages, the mean absolute error (MAE), used to measure the errors was found in the SVM less than the (MAE) in MLP algorithm. we can conclude that using SVM is considered better than the MLP algorithm because the accuracy in SVM better than the accuracy of MLP.
format Online
Article
Text
id pubmed-9727340
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher West Asia Organization for Cancer Prevention
record_format MEDLINE/PubMed
spelling pubmed-97273402022-12-09 A Comparative Evaluation of Cancer Classification via TP53 Gene Mutations Using Machin Learning Mikhail, Dina Yousif Al-Mukhtar, Firas H. Kareem, Shahab Wahab Asian Pac J Cancer Prev Original Article OBJECTIVE: Cancer is one of the horrendous diseases. Classifying cancer is founded on identifying cancer-causing mutations in gene sequences. Although genetic analysis can predict certain types of cancer, there is currently no effective method for predicting cancers. Therefore, the purpose of this paper is to predict the cancer types and to find a data mining technique that uses two different machine learning algorithms for classifying cancer. Moreover, earlier detection of the mutated tumor protein P53 gene can predict treatment and gene therapy techniques. METHODS: (UMD-2010) the Universal Mutation Database is used to diagnose mutations in genes. The challenge, however, is that the database very basic. Besides, it is an excel format database. Due to its limitations, the data base cannot be used to classify cancer. In addition, bioinformatics techniques such as pairwise alignment and BLAST are used, followed by machine learning algorithms that use neural network algorithms to classify cancer based on malignant mutations in the TP53 gene, by selecting (12) out of (53) database fields for the TP53 gene database in the second stage. It should be noted that the (UMDCell-line2010) database does not have one of these twelve fields (Field of gene locus). RESULT: As a Utilizing MLP and SVM for training and testing a set number of fields, the Machin learning methods were found to be an effective way to classify cancers. Where the Relative Absolute Error for MLP and SVM is 83.6005 % ,65.6605 %, the accuracy is 90 %, 93.7% respectively. CONCLUSION: Following the learning and testing stages, the mean absolute error (MAE), used to measure the errors was found in the SVM less than the (MAE) in MLP algorithm. we can conclude that using SVM is considered better than the MLP algorithm because the accuracy in SVM better than the accuracy of MLP. West Asia Organization for Cancer Prevention 2022-07 /pmc/articles/PMC9727340/ /pubmed/35901354 http://dx.doi.org/10.31557/APJCP.2022.23.7.2459 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License. https://creativecommons.org/licenses/by-nc/4.0/
spellingShingle Original Article
Mikhail, Dina Yousif
Al-Mukhtar, Firas H.
Kareem, Shahab Wahab
A Comparative Evaluation of Cancer Classification via TP53 Gene Mutations Using Machin Learning
title A Comparative Evaluation of Cancer Classification via TP53 Gene Mutations Using Machin Learning
title_full A Comparative Evaluation of Cancer Classification via TP53 Gene Mutations Using Machin Learning
title_fullStr A Comparative Evaluation of Cancer Classification via TP53 Gene Mutations Using Machin Learning
title_full_unstemmed A Comparative Evaluation of Cancer Classification via TP53 Gene Mutations Using Machin Learning
title_short A Comparative Evaluation of Cancer Classification via TP53 Gene Mutations Using Machin Learning
title_sort comparative evaluation of cancer classification via tp53 gene mutations using machin learning
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727340/
https://www.ncbi.nlm.nih.gov/pubmed/35901354
http://dx.doi.org/10.31557/APJCP.2022.23.7.2459
work_keys_str_mv AT mikhaildinayousif acomparativeevaluationofcancerclassificationviatp53genemutationsusingmachinlearning
AT almukhtarfirash acomparativeevaluationofcancerclassificationviatp53genemutationsusingmachinlearning
AT kareemshahabwahab acomparativeevaluationofcancerclassificationviatp53genemutationsusingmachinlearning
AT mikhaildinayousif comparativeevaluationofcancerclassificationviatp53genemutationsusingmachinlearning
AT almukhtarfirash comparativeevaluationofcancerclassificationviatp53genemutationsusingmachinlearning
AT kareemshahabwahab comparativeevaluationofcancerclassificationviatp53genemutationsusingmachinlearning