Cargando…

Integrated transcriptomic and metabolomic profiling reveals dysregulation of purine metabolism during the acute phase of spinal cord injury in rats

INTRODUCTION: Spinal cord injury (SCI) results in drastic dysregulation of microenvironmental metabolism during the acute phase, which greatly affects neural recovery. A better insight into the potential molecular pathways of metabolic dysregulation by multi-omics analysis could help to reveal targe...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Zhong, Li, Mei, Jiang, Zhanfeng, Lan, Yuanxiang, Chen, Lei, Chen, Yanjun, Li, Hailiang, Hui, Jianwen, Zhang, Lijian, Hu, Xvlei, Xia, Hechun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727392/
https://www.ncbi.nlm.nih.gov/pubmed/36507345
http://dx.doi.org/10.3389/fnins.2022.1066528
_version_ 1784845007434285056
author Zeng, Zhong
Li, Mei
Jiang, Zhanfeng
Lan, Yuanxiang
Chen, Lei
Chen, Yanjun
Li, Hailiang
Hui, Jianwen
Zhang, Lijian
Hu, Xvlei
Xia, Hechun
author_facet Zeng, Zhong
Li, Mei
Jiang, Zhanfeng
Lan, Yuanxiang
Chen, Lei
Chen, Yanjun
Li, Hailiang
Hui, Jianwen
Zhang, Lijian
Hu, Xvlei
Xia, Hechun
author_sort Zeng, Zhong
collection PubMed
description INTRODUCTION: Spinal cord injury (SCI) results in drastic dysregulation of microenvironmental metabolism during the acute phase, which greatly affects neural recovery. A better insight into the potential molecular pathways of metabolic dysregulation by multi-omics analysis could help to reveal targets that promote nerve repair and regeneration in the future. MATERIALS AND METHODS: We established the SCI model and rats were randomly divided into two groups: the acute-phase SCI (ASCI) group (n = 14, 3 days post-SCI) and the sham group with day-matched periods (n = 14, without SCI). In each group, rats were sacrificed at 3 days post-surgery for histology study (n = 3), metabolome sequencing (n = 5), transcriptome sequencing (n = 3), and quantitative real-time polymerase chain reaction (n = 3). The motor function of rats was evaluated by double-blind Basso, Beattie, and Bresnahan (BBB) Locomotor Scores at 0, 1, 2, 3 days post-SCI in an open field area. Then the transcriptomic and metabolomic data were integrated in SCI model of rat to reveal the underlying molecular pathways of microenvironmental metabolic dysregulation. RESULTS: The histology of the microenvironment was significantly altered in ASCI and the locomotor function was significantly reduced in rats. Metabolomics analysis showed that 360 metabolites were highly altered during the acute phase of SCI, of which 310 were up-regulated and 50 were down-regulated, and bioinformatics analysis revealed that these differential metabolites were mainly enriched in arginine and proline metabolism, D-glutamine and D-glutamate metabolism, purine metabolism, biosynthesis of unsaturated fatty acids. Transcriptomics results showed that 5,963 genes were clearly altered, of which 2,848 genes were up-regulated and 3,115 genes were down-regulated, and these differentially expressed genes were mainly involved in response to stimulus, metabolic process, immune system process. Surprisingly, the Integrative analysis revealed significant dysregulation of purine metabolism at both transcriptome and metabolome levels in the acute phase of SCI, with 48 differential genes and 16 differential metabolites involved. Further analysis indicated that dysregulation of purine metabolism could seriously affect the energy metabolism of the injured microenvironment and increase oxidative stress as well as other responses detrimental to nerve repair and regeneration. DISCUSSION: On the whole, we have for the first time combined transcriptomics and metabolomics to systematically analyze the potential molecular pathways of metabolic dysregulation in the acute phase of SCI, which will contribute to broaden our understanding of the sophisticated molecular mechanisms of SCI, in parallel with serving as a foundation for future studies of neural repair and regeneration after SCI.
format Online
Article
Text
id pubmed-9727392
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-97273922022-12-08 Integrated transcriptomic and metabolomic profiling reveals dysregulation of purine metabolism during the acute phase of spinal cord injury in rats Zeng, Zhong Li, Mei Jiang, Zhanfeng Lan, Yuanxiang Chen, Lei Chen, Yanjun Li, Hailiang Hui, Jianwen Zhang, Lijian Hu, Xvlei Xia, Hechun Front Neurosci Neuroscience INTRODUCTION: Spinal cord injury (SCI) results in drastic dysregulation of microenvironmental metabolism during the acute phase, which greatly affects neural recovery. A better insight into the potential molecular pathways of metabolic dysregulation by multi-omics analysis could help to reveal targets that promote nerve repair and regeneration in the future. MATERIALS AND METHODS: We established the SCI model and rats were randomly divided into two groups: the acute-phase SCI (ASCI) group (n = 14, 3 days post-SCI) and the sham group with day-matched periods (n = 14, without SCI). In each group, rats were sacrificed at 3 days post-surgery for histology study (n = 3), metabolome sequencing (n = 5), transcriptome sequencing (n = 3), and quantitative real-time polymerase chain reaction (n = 3). The motor function of rats was evaluated by double-blind Basso, Beattie, and Bresnahan (BBB) Locomotor Scores at 0, 1, 2, 3 days post-SCI in an open field area. Then the transcriptomic and metabolomic data were integrated in SCI model of rat to reveal the underlying molecular pathways of microenvironmental metabolic dysregulation. RESULTS: The histology of the microenvironment was significantly altered in ASCI and the locomotor function was significantly reduced in rats. Metabolomics analysis showed that 360 metabolites were highly altered during the acute phase of SCI, of which 310 were up-regulated and 50 were down-regulated, and bioinformatics analysis revealed that these differential metabolites were mainly enriched in arginine and proline metabolism, D-glutamine and D-glutamate metabolism, purine metabolism, biosynthesis of unsaturated fatty acids. Transcriptomics results showed that 5,963 genes were clearly altered, of which 2,848 genes were up-regulated and 3,115 genes were down-regulated, and these differentially expressed genes were mainly involved in response to stimulus, metabolic process, immune system process. Surprisingly, the Integrative analysis revealed significant dysregulation of purine metabolism at both transcriptome and metabolome levels in the acute phase of SCI, with 48 differential genes and 16 differential metabolites involved. Further analysis indicated that dysregulation of purine metabolism could seriously affect the energy metabolism of the injured microenvironment and increase oxidative stress as well as other responses detrimental to nerve repair and regeneration. DISCUSSION: On the whole, we have for the first time combined transcriptomics and metabolomics to systematically analyze the potential molecular pathways of metabolic dysregulation in the acute phase of SCI, which will contribute to broaden our understanding of the sophisticated molecular mechanisms of SCI, in parallel with serving as a foundation for future studies of neural repair and regeneration after SCI. Frontiers Media S.A. 2022-11-23 /pmc/articles/PMC9727392/ /pubmed/36507345 http://dx.doi.org/10.3389/fnins.2022.1066528 Text en Copyright © 2022 Zeng, Li, Jiang, Lan, Chen, Chen, Li, Hui, Zhang, Hu and Xia. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Zeng, Zhong
Li, Mei
Jiang, Zhanfeng
Lan, Yuanxiang
Chen, Lei
Chen, Yanjun
Li, Hailiang
Hui, Jianwen
Zhang, Lijian
Hu, Xvlei
Xia, Hechun
Integrated transcriptomic and metabolomic profiling reveals dysregulation of purine metabolism during the acute phase of spinal cord injury in rats
title Integrated transcriptomic and metabolomic profiling reveals dysregulation of purine metabolism during the acute phase of spinal cord injury in rats
title_full Integrated transcriptomic and metabolomic profiling reveals dysregulation of purine metabolism during the acute phase of spinal cord injury in rats
title_fullStr Integrated transcriptomic and metabolomic profiling reveals dysregulation of purine metabolism during the acute phase of spinal cord injury in rats
title_full_unstemmed Integrated transcriptomic and metabolomic profiling reveals dysregulation of purine metabolism during the acute phase of spinal cord injury in rats
title_short Integrated transcriptomic and metabolomic profiling reveals dysregulation of purine metabolism during the acute phase of spinal cord injury in rats
title_sort integrated transcriptomic and metabolomic profiling reveals dysregulation of purine metabolism during the acute phase of spinal cord injury in rats
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727392/
https://www.ncbi.nlm.nih.gov/pubmed/36507345
http://dx.doi.org/10.3389/fnins.2022.1066528
work_keys_str_mv AT zengzhong integratedtranscriptomicandmetabolomicprofilingrevealsdysregulationofpurinemetabolismduringtheacutephaseofspinalcordinjuryinrats
AT limei integratedtranscriptomicandmetabolomicprofilingrevealsdysregulationofpurinemetabolismduringtheacutephaseofspinalcordinjuryinrats
AT jiangzhanfeng integratedtranscriptomicandmetabolomicprofilingrevealsdysregulationofpurinemetabolismduringtheacutephaseofspinalcordinjuryinrats
AT lanyuanxiang integratedtranscriptomicandmetabolomicprofilingrevealsdysregulationofpurinemetabolismduringtheacutephaseofspinalcordinjuryinrats
AT chenlei integratedtranscriptomicandmetabolomicprofilingrevealsdysregulationofpurinemetabolismduringtheacutephaseofspinalcordinjuryinrats
AT chenyanjun integratedtranscriptomicandmetabolomicprofilingrevealsdysregulationofpurinemetabolismduringtheacutephaseofspinalcordinjuryinrats
AT lihailiang integratedtranscriptomicandmetabolomicprofilingrevealsdysregulationofpurinemetabolismduringtheacutephaseofspinalcordinjuryinrats
AT huijianwen integratedtranscriptomicandmetabolomicprofilingrevealsdysregulationofpurinemetabolismduringtheacutephaseofspinalcordinjuryinrats
AT zhanglijian integratedtranscriptomicandmetabolomicprofilingrevealsdysregulationofpurinemetabolismduringtheacutephaseofspinalcordinjuryinrats
AT huxvlei integratedtranscriptomicandmetabolomicprofilingrevealsdysregulationofpurinemetabolismduringtheacutephaseofspinalcordinjuryinrats
AT xiahechun integratedtranscriptomicandmetabolomicprofilingrevealsdysregulationofpurinemetabolismduringtheacutephaseofspinalcordinjuryinrats