Cargando…
Small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells improve postoperative cognitive dysfunction in mice with diabetes
Postoperative cognitive dysfunction (POCD) is a common surgical complication. Diabetes mellitus (DM) increases risk of developing POCD after surgery. DM patients with POCD seriously threaten the quality of patients’ life, however, the intrinsic mechanism is unclear, and the effective treatment is de...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727445/ https://www.ncbi.nlm.nih.gov/pubmed/36018185 http://dx.doi.org/10.4103/1673-5374.350205 |
_version_ | 1784845021881565184 |
---|---|
author | Lang, Hai-Li Zhao, Yan-Zhi Xiao, Ren-Jie Sun, Jing Chen, Yong Hu, Guo-Wen Xu, Guo-Hai |
author_facet | Lang, Hai-Li Zhao, Yan-Zhi Xiao, Ren-Jie Sun, Jing Chen, Yong Hu, Guo-Wen Xu, Guo-Hai |
author_sort | Lang, Hai-Li |
collection | PubMed |
description | Postoperative cognitive dysfunction (POCD) is a common surgical complication. Diabetes mellitus (DM) increases risk of developing POCD after surgery. DM patients with POCD seriously threaten the quality of patients’ life, however, the intrinsic mechanism is unclear, and the effective treatment is deficiency. Previous studies have demonstrated neuronal loss and reduced neurogenesis in the hippocampus in mouse models of POCD. In this study, we constructed a mouse model of DM by intraperitoneal injection of streptozotocin, and then induced postoperative cognitive dysfunction by transient bilateral common carotid artery occlusion. We found that mouse models of DM-POCD exhibited the most serious cognitive impairment, as well as the most hippocampal neural stem cells (H-NSCs) loss and neurogenesis decline. Subsequently, we hypothesized that small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells (iMSC-sEVs) might promote neurogenesis and restore cognitive function in patients with DM-POCD. iMSC-sEVs were administered via the tail vein beginning on day 2 after surgery, and then once every 3 days for 1 month thereafter. Our results showed that iMSC-sEVs treatment significantly recovered compromised proliferation and neuronal-differentiation capacity in H-NSCs, and reversed cognitive impairment in mouse models of DM-POCD. Furthermore, miRNA sequencing and qPCR showed miR-21-5p and miR-486-5p were the highest expression in iMSC-sEVs. We found iMSC-sEVs mainly transferred miR-21-5p and miR-486-5p to promote H-NSCs proliferation and neurogenesis. As miR-21-5p was demonstrated to directly targete Epha4 and CDKN2C, while miR-486-5p can inhibit FoxO1 in NSCs. We then demonstrated iMSC-sEVs can transfer miR-21-5p and miR-486-5p to inhibit EphA4, CDKN2C, and FoxO1 expression in H-NSCs. Collectively, these results indicate significant H-NSC loss and neurogenesis reduction lead to DM-POCD, the application of iMSC-sEVs may represent a novel cell-free therapeutic tool for diabetic patients with postoperative cognitive dysfunction. |
format | Online Article Text |
id | pubmed-9727445 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-97274452022-12-08 Small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells improve postoperative cognitive dysfunction in mice with diabetes Lang, Hai-Li Zhao, Yan-Zhi Xiao, Ren-Jie Sun, Jing Chen, Yong Hu, Guo-Wen Xu, Guo-Hai Neural Regen Res Research Article Postoperative cognitive dysfunction (POCD) is a common surgical complication. Diabetes mellitus (DM) increases risk of developing POCD after surgery. DM patients with POCD seriously threaten the quality of patients’ life, however, the intrinsic mechanism is unclear, and the effective treatment is deficiency. Previous studies have demonstrated neuronal loss and reduced neurogenesis in the hippocampus in mouse models of POCD. In this study, we constructed a mouse model of DM by intraperitoneal injection of streptozotocin, and then induced postoperative cognitive dysfunction by transient bilateral common carotid artery occlusion. We found that mouse models of DM-POCD exhibited the most serious cognitive impairment, as well as the most hippocampal neural stem cells (H-NSCs) loss and neurogenesis decline. Subsequently, we hypothesized that small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells (iMSC-sEVs) might promote neurogenesis and restore cognitive function in patients with DM-POCD. iMSC-sEVs were administered via the tail vein beginning on day 2 after surgery, and then once every 3 days for 1 month thereafter. Our results showed that iMSC-sEVs treatment significantly recovered compromised proliferation and neuronal-differentiation capacity in H-NSCs, and reversed cognitive impairment in mouse models of DM-POCD. Furthermore, miRNA sequencing and qPCR showed miR-21-5p and miR-486-5p were the highest expression in iMSC-sEVs. We found iMSC-sEVs mainly transferred miR-21-5p and miR-486-5p to promote H-NSCs proliferation and neurogenesis. As miR-21-5p was demonstrated to directly targete Epha4 and CDKN2C, while miR-486-5p can inhibit FoxO1 in NSCs. We then demonstrated iMSC-sEVs can transfer miR-21-5p and miR-486-5p to inhibit EphA4, CDKN2C, and FoxO1 expression in H-NSCs. Collectively, these results indicate significant H-NSC loss and neurogenesis reduction lead to DM-POCD, the application of iMSC-sEVs may represent a novel cell-free therapeutic tool for diabetic patients with postoperative cognitive dysfunction. Wolters Kluwer - Medknow 2022-08-02 /pmc/articles/PMC9727445/ /pubmed/36018185 http://dx.doi.org/10.4103/1673-5374.350205 Text en Copyright: © Neural Regeneration Research https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Research Article Lang, Hai-Li Zhao, Yan-Zhi Xiao, Ren-Jie Sun, Jing Chen, Yong Hu, Guo-Wen Xu, Guo-Hai Small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells improve postoperative cognitive dysfunction in mice with diabetes |
title | Small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells improve postoperative cognitive dysfunction in mice with diabetes |
title_full | Small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells improve postoperative cognitive dysfunction in mice with diabetes |
title_fullStr | Small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells improve postoperative cognitive dysfunction in mice with diabetes |
title_full_unstemmed | Small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells improve postoperative cognitive dysfunction in mice with diabetes |
title_short | Small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells improve postoperative cognitive dysfunction in mice with diabetes |
title_sort | small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells improve postoperative cognitive dysfunction in mice with diabetes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727445/ https://www.ncbi.nlm.nih.gov/pubmed/36018185 http://dx.doi.org/10.4103/1673-5374.350205 |
work_keys_str_mv | AT langhaili smallextracellularvesiclessecretedbyinducedpluripotentstemcellderivedmesenchymalstemcellsimprovepostoperativecognitivedysfunctioninmicewithdiabetes AT zhaoyanzhi smallextracellularvesiclessecretedbyinducedpluripotentstemcellderivedmesenchymalstemcellsimprovepostoperativecognitivedysfunctioninmicewithdiabetes AT xiaorenjie smallextracellularvesiclessecretedbyinducedpluripotentstemcellderivedmesenchymalstemcellsimprovepostoperativecognitivedysfunctioninmicewithdiabetes AT sunjing smallextracellularvesiclessecretedbyinducedpluripotentstemcellderivedmesenchymalstemcellsimprovepostoperativecognitivedysfunctioninmicewithdiabetes AT chenyong smallextracellularvesiclessecretedbyinducedpluripotentstemcellderivedmesenchymalstemcellsimprovepostoperativecognitivedysfunctioninmicewithdiabetes AT huguowen smallextracellularvesiclessecretedbyinducedpluripotentstemcellderivedmesenchymalstemcellsimprovepostoperativecognitivedysfunctioninmicewithdiabetes AT xuguohai smallextracellularvesiclessecretedbyinducedpluripotentstemcellderivedmesenchymalstemcellsimprovepostoperativecognitivedysfunctioninmicewithdiabetes |