Cargando…
A master equation for power laws
We propose a new mechanism for generating power laws. Starting from a random walk, we first outline a simple derivation of the Fokker–Planck equation. By analogy, starting from a certain Markov chain, we derive a master equation for power laws that describes how the number of cascades changes over t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727680/ https://www.ncbi.nlm.nih.gov/pubmed/36483760 http://dx.doi.org/10.1098/rsos.220531 |
_version_ | 1784845075839188992 |
---|---|
author | Roman, Sabin Bertolotti, Francesco |
author_facet | Roman, Sabin Bertolotti, Francesco |
author_sort | Roman, Sabin |
collection | PubMed |
description | We propose a new mechanism for generating power laws. Starting from a random walk, we first outline a simple derivation of the Fokker–Planck equation. By analogy, starting from a certain Markov chain, we derive a master equation for power laws that describes how the number of cascades changes over time (cascades are consecutive transitions that end when the initial state is reached). The partial differential equation has a closed form solution which gives an explicit dependence of the number of cascades on their size and on time. Furthermore, the power law solution has a natural cut-off, a feature often seen in empirical data. This is due to the finite size a cascade can have in a finite time horizon. The derivation of the equation provides a justification for an exponent equal to 2, which agrees well with several empirical distributions, including Richardson’s Law on the size and frequency of deadly conflicts. Nevertheless, the equation can be solved for any exponent value. In addition, we propose an urn model where the number of consecutive ball extractions follows a power law. In all cases, the power law is manifest over the entire range of cascade sizes, as shown through log–log plots in the frequency and rank distributions. |
format | Online Article Text |
id | pubmed-9727680 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-97276802022-12-07 A master equation for power laws Roman, Sabin Bertolotti, Francesco R Soc Open Sci Mathematics We propose a new mechanism for generating power laws. Starting from a random walk, we first outline a simple derivation of the Fokker–Planck equation. By analogy, starting from a certain Markov chain, we derive a master equation for power laws that describes how the number of cascades changes over time (cascades are consecutive transitions that end when the initial state is reached). The partial differential equation has a closed form solution which gives an explicit dependence of the number of cascades on their size and on time. Furthermore, the power law solution has a natural cut-off, a feature often seen in empirical data. This is due to the finite size a cascade can have in a finite time horizon. The derivation of the equation provides a justification for an exponent equal to 2, which agrees well with several empirical distributions, including Richardson’s Law on the size and frequency of deadly conflicts. Nevertheless, the equation can be solved for any exponent value. In addition, we propose an urn model where the number of consecutive ball extractions follows a power law. In all cases, the power law is manifest over the entire range of cascade sizes, as shown through log–log plots in the frequency and rank distributions. The Royal Society 2022-12-07 /pmc/articles/PMC9727680/ /pubmed/36483760 http://dx.doi.org/10.1098/rsos.220531 Text en © 2022 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Mathematics Roman, Sabin Bertolotti, Francesco A master equation for power laws |
title | A master equation for power laws |
title_full | A master equation for power laws |
title_fullStr | A master equation for power laws |
title_full_unstemmed | A master equation for power laws |
title_short | A master equation for power laws |
title_sort | master equation for power laws |
topic | Mathematics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727680/ https://www.ncbi.nlm.nih.gov/pubmed/36483760 http://dx.doi.org/10.1098/rsos.220531 |
work_keys_str_mv | AT romansabin amasterequationforpowerlaws AT bertolottifrancesco amasterequationforpowerlaws AT romansabin masterequationforpowerlaws AT bertolottifrancesco masterequationforpowerlaws |