Cargando…
Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network
BACKGROUND: For prognosis of stroke, measurement of the diffusion-perfusion mismatch is a common practice for estimating tissue at risk of infarction in the absence of timely reperfusion. However, perfusion-weighted imaging (PWI) adds time and expense to the acute stroke imaging workup. We explored...
Autores principales: | Nazari-Farsani, Sanaz, Yu, Yannan, Armindo, Rui Duarte, Lansberg, Maarten, Liebeskind, David S., Albers, Gregory, Christensen, Soren, Levin, Craig S., Zaharchuk, Greg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727698/ https://www.ncbi.nlm.nih.gov/pubmed/36481696 http://dx.doi.org/10.1016/j.nicl.2022.103278 |
Ejemplares similares
-
Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging
por: Yu, Yannan, et al.
Publicado: (2020) -
Predicting Infarct Core From Computed Tomography Perfusion in Acute Ischemia With Machine Learning: Lessons From the ISLES Challenge
por: Hakim, Arsany, et al.
Publicado: (2021) -
Phase-based metamorphosis of diffusion lesion in relation to perfusion values in acute ischemic stroke
por: Rekik, Islem, et al.
Publicado: (2015) -
RSA of the Symax hip stem
por: Aro, Hannu T, et al.
Publicado: (2020) -
Decision-Making Visual Aids for Late, Imaging-Guided Endovascular Thrombectomy for Acute Ischemic Stroke
por: Moshayedi, Pouria, et al.
Publicado: (2020)