Cargando…

Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model

BACKGROUND: In recent years, neuroimaging with deep learning (DL) algorithms have made remarkable advances in the diagnosis of neurodegenerative disorders. However, applying DL in different medical domains is usually challenged by lack of labeled data. To address this challenge, transfer learning (T...

Descripción completa

Detalles Bibliográficos
Autores principales: Soliman, Amira, Chang, Jose R., Etminani, Kobra, Byttner, Stefan, Davidsson, Anette, Martínez-Sanchis, Begoña, Camacho, Valle, Bauckneht, Matteo, Stegeran, Roxana, Ressner, Marcus, Agudelo-Cifuentes, Marc, Chincarini, Andrea, Brendel, Matthias, Rominger, Axel, Bruffaerts, Rose, Vandenberghe, Rik, Kramberger, Milica G., Trost, Maja, Nicastro, Nicolas, Frisoni, Giovanni B., Lemstra, Afina W., Berckel, Bart N. M. van, Pilotto, Andrea, Padovani, Alessandro, Morbelli, Silvia, Aarsland, Dag, Nobili, Flavio, Garibotto, Valentina, Ochoa-Figueroa, Miguel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727842/
https://www.ncbi.nlm.nih.gov/pubmed/36476613
http://dx.doi.org/10.1186/s12911-022-02054-7
_version_ 1784845112259379200
author Soliman, Amira
Chang, Jose R.
Etminani, Kobra
Byttner, Stefan
Davidsson, Anette
Martínez-Sanchis, Begoña
Camacho, Valle
Bauckneht, Matteo
Stegeran, Roxana
Ressner, Marcus
Agudelo-Cifuentes, Marc
Chincarini, Andrea
Brendel, Matthias
Rominger, Axel
Bruffaerts, Rose
Vandenberghe, Rik
Kramberger, Milica G.
Trost, Maja
Nicastro, Nicolas
Frisoni, Giovanni B.
Lemstra, Afina W.
Berckel, Bart N. M. van
Pilotto, Andrea
Padovani, Alessandro
Morbelli, Silvia
Aarsland, Dag
Nobili, Flavio
Garibotto, Valentina
Ochoa-Figueroa, Miguel
author_facet Soliman, Amira
Chang, Jose R.
Etminani, Kobra
Byttner, Stefan
Davidsson, Anette
Martínez-Sanchis, Begoña
Camacho, Valle
Bauckneht, Matteo
Stegeran, Roxana
Ressner, Marcus
Agudelo-Cifuentes, Marc
Chincarini, Andrea
Brendel, Matthias
Rominger, Axel
Bruffaerts, Rose
Vandenberghe, Rik
Kramberger, Milica G.
Trost, Maja
Nicastro, Nicolas
Frisoni, Giovanni B.
Lemstra, Afina W.
Berckel, Bart N. M. van
Pilotto, Andrea
Padovani, Alessandro
Morbelli, Silvia
Aarsland, Dag
Nobili, Flavio
Garibotto, Valentina
Ochoa-Figueroa, Miguel
author_sort Soliman, Amira
collection PubMed
description BACKGROUND: In recent years, neuroimaging with deep learning (DL) algorithms have made remarkable advances in the diagnosis of neurodegenerative disorders. However, applying DL in different medical domains is usually challenged by lack of labeled data. To address this challenge, transfer learning (TL) has been applied to use state-of-the-art convolution neural networks pre-trained on natural images. Yet, there are differences in characteristics between medical and natural images, also image classification and targeted medical diagnosis tasks. The purpose of this study is to investigate the performance of specialized and TL in the classification of neurodegenerative disorders using 3D volumes of 18F-FDG-PET brain scans. RESULTS: Results show that TL models are suboptimal for classification of neurodegenerative disorders, especially when the objective is to separate more than two disorders. Additionally, specialized CNN model provides better interpretations of predicted diagnosis. CONCLUSIONS: TL can indeed lead to superior performance on binary classification in timely and data efficient manner, yet for detecting more than a single disorder, TL models do not perform well. Additionally, custom 3D model performs comparably to TL models for binary classification, and interestingly perform better for diagnosis of multiple disorders. The results confirm the superiority of the custom 3D-CNN in providing better explainable model compared to TL adopted ones.
format Online
Article
Text
id pubmed-9727842
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-97278422022-12-08 Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model Soliman, Amira Chang, Jose R. Etminani, Kobra Byttner, Stefan Davidsson, Anette Martínez-Sanchis, Begoña Camacho, Valle Bauckneht, Matteo Stegeran, Roxana Ressner, Marcus Agudelo-Cifuentes, Marc Chincarini, Andrea Brendel, Matthias Rominger, Axel Bruffaerts, Rose Vandenberghe, Rik Kramberger, Milica G. Trost, Maja Nicastro, Nicolas Frisoni, Giovanni B. Lemstra, Afina W. Berckel, Bart N. M. van Pilotto, Andrea Padovani, Alessandro Morbelli, Silvia Aarsland, Dag Nobili, Flavio Garibotto, Valentina Ochoa-Figueroa, Miguel BMC Med Inform Decis Mak Research BACKGROUND: In recent years, neuroimaging with deep learning (DL) algorithms have made remarkable advances in the diagnosis of neurodegenerative disorders. However, applying DL in different medical domains is usually challenged by lack of labeled data. To address this challenge, transfer learning (TL) has been applied to use state-of-the-art convolution neural networks pre-trained on natural images. Yet, there are differences in characteristics between medical and natural images, also image classification and targeted medical diagnosis tasks. The purpose of this study is to investigate the performance of specialized and TL in the classification of neurodegenerative disorders using 3D volumes of 18F-FDG-PET brain scans. RESULTS: Results show that TL models are suboptimal for classification of neurodegenerative disorders, especially when the objective is to separate more than two disorders. Additionally, specialized CNN model provides better interpretations of predicted diagnosis. CONCLUSIONS: TL can indeed lead to superior performance on binary classification in timely and data efficient manner, yet for detecting more than a single disorder, TL models do not perform well. Additionally, custom 3D model performs comparably to TL models for binary classification, and interestingly perform better for diagnosis of multiple disorders. The results confirm the superiority of the custom 3D-CNN in providing better explainable model compared to TL adopted ones. BioMed Central 2022-12-07 /pmc/articles/PMC9727842/ /pubmed/36476613 http://dx.doi.org/10.1186/s12911-022-02054-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Soliman, Amira
Chang, Jose R.
Etminani, Kobra
Byttner, Stefan
Davidsson, Anette
Martínez-Sanchis, Begoña
Camacho, Valle
Bauckneht, Matteo
Stegeran, Roxana
Ressner, Marcus
Agudelo-Cifuentes, Marc
Chincarini, Andrea
Brendel, Matthias
Rominger, Axel
Bruffaerts, Rose
Vandenberghe, Rik
Kramberger, Milica G.
Trost, Maja
Nicastro, Nicolas
Frisoni, Giovanni B.
Lemstra, Afina W.
Berckel, Bart N. M. van
Pilotto, Andrea
Padovani, Alessandro
Morbelli, Silvia
Aarsland, Dag
Nobili, Flavio
Garibotto, Valentina
Ochoa-Figueroa, Miguel
Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model
title Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model
title_full Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model
title_fullStr Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model
title_full_unstemmed Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model
title_short Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model
title_sort adopting transfer learning for neuroimaging: a comparative analysis with a custom 3d convolution neural network model
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727842/
https://www.ncbi.nlm.nih.gov/pubmed/36476613
http://dx.doi.org/10.1186/s12911-022-02054-7
work_keys_str_mv AT solimanamira adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT changjoser adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT etminanikobra adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT byttnerstefan adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT davidssonanette adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT martinezsanchisbegona adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT camachovalle adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT baucknehtmatteo adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT stegeranroxana adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT ressnermarcus adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT agudelocifuentesmarc adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT chincariniandrea adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT brendelmatthias adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT romingeraxel adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT bruffaertsrose adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT vandenbergherik adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT krambergermilicag adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT trostmaja adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT nicastronicolas adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT frisonigiovannib adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT lemstraafinaw adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT berckelbartnmvan adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT pilottoandrea adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT padovanialessandro adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT morbellisilvia adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT aarslanddag adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT nobiliflavio adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT garibottovalentina adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel
AT ochoafigueroamiguel adoptingtransferlearningforneuroimagingacomparativeanalysiswithacustom3dconvolutionneuralnetworkmodel