Cargando…

Comparison of prokaryotes between Mount Everest and the Mariana Trench

BACKGROUND: Mount Everest and the Mariana Trench represent the highest and deepest places on Earth, respectively. They are geographically separated, with distinct extreme environmental parameters that provide unique habitats for prokaryotes. Comparison of prokaryotes between Mount Everest and the Ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yongqin, Zhang, Zhihao, Ji, Mukan, Hu, Aoran, Wang, Jing, Jing, Hongmei, Liu, Keshao, Xiao, Xiang, Zhao, Weishu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9727886/
https://www.ncbi.nlm.nih.gov/pubmed/36476562
http://dx.doi.org/10.1186/s40168-022-01403-y
Descripción
Sumario:BACKGROUND: Mount Everest and the Mariana Trench represent the highest and deepest places on Earth, respectively. They are geographically separated, with distinct extreme environmental parameters that provide unique habitats for prokaryotes. Comparison of prokaryotes between Mount Everest and the Mariana Trench will provide a unique perspective to understanding the composition and distribution of environmental microbiomes on Earth. RESULTS: Here, we compared prokaryotic communities between Mount Everest and the Mariana Trench based on shotgun metagenomic analysis. Analyzing 25 metagenomes and 1176 metagenome-assembled genomes showed distinct taxonomic compositions between Mount Everest and the Mariana Trench, with little taxa overlap, and significant differences in genome size, GC content, and predicted optimal growth temperature. However, community metabolic capabilities exhibited striking commonality, with > 90% of metabolic modules overlapping among samples of Mount Everest and the Mariana Trench, with the only exception for CO(2) fixations (photoautotrophy in Mount Everest but chemoautotrophy in the Mariana Trench). Most metabolic pathways were common but performed by distinct taxa in the two extreme habitats, even including some specialized metabolic pathways, such as the versatile degradation of various refractory organic matters, heavy metal metabolism (e.g., As and Se), stress resistance, and antioxidation. The metabolic commonality indicated the overall consistent roles of prokaryotes in elemental cycling and common adaptation strategies to overcome the distinct stress conditions despite the intuitively huge differences in Mount Everest and the Mariana Trench. CONCLUSION: Our results, the first comparison between prokaryotes in the highest and the deepest habitats on Earth, may highlight the principles of prokaryotic diversity: although taxa are habitat-specific, primary metabolic functions could be always conserved. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01403-y.