Cargando…

Cullin 3/KCTD5 Promotes the Ubiqutination of Rho Guanine Nucleotide Dissociation Inhibitor 1 and Regulates Its Stability

Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays important roles in numerous cellular processes, including cell motility, adhesion, and proliferation, by regulating the activity of Rho GTPases. Its expression is altered in various human cancers and is associated with malignant progres...

Descripción completa

Detalles Bibliográficos
Autores principales: Cho, Hee Jun, Ryu, Ki-Jun, Baek, Kyoung Eun, Lim, Jeewon, Kim, Taeyoung, Song, Chae Yeong, Yoo, Jiyun, Lee, Hee Gu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Microbiology and Biotechnology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9728164/
https://www.ncbi.nlm.nih.gov/pubmed/32876072
http://dx.doi.org/10.4014/jmb.2007.07033
Descripción
Sumario:Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays important roles in numerous cellular processes, including cell motility, adhesion, and proliferation, by regulating the activity of Rho GTPases. Its expression is altered in various human cancers and is associated with malignant progression. Here, we show that RhoGDI1 interacts with Cullin 3 (CUL3), a scaffold protein for E3 ubiquitin ligase complexes. Ectopic expression of CUL3 increases the ubiquitination of RhoGDI1. Furthermore, potassium channel tetramerization domain containing 5 (KCTD5) also binds to RhoGDI1 and increases its interaction with CUL3. Ectopic expression of KCTD5 increases the ubiquitination of RhoGDI1, whereas its knockdown by RNA interference has the opposite effect. Depletion of KCTD5 or expression of dominant-negative CUL3 (DN-CUL3) enhances the stability of RhoGDI1. Our findings reveal a previously unknown mechanism for controlling RhoGDI1 degradation that involves a CUL3/KCTD5 ubiquitin ligase complex.