Cargando…
Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp(3))–H fluorinations
Of the methods for direct fluorination of unactivated C(sp(3))–H bonds, photosensitization of SelectFluor is a promising approach. Although many substrates can be activated with photosensitizing catalysts, issues remain that hamper fluorination of complex molecules. Alcohol- or amine-containing func...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9728569/ https://www.ncbi.nlm.nih.gov/pubmed/36540818 http://dx.doi.org/10.1039/d2sc05735b |
_version_ | 1784845284269883392 |
---|---|
author | Yakubov, Shahboz Stockerl, Willibald J. Tian, Xianhai Shahin, Ahmed Mandigma, Mark John P. Gschwind, Ruth M. Barham, Joshua P. |
author_facet | Yakubov, Shahboz Stockerl, Willibald J. Tian, Xianhai Shahin, Ahmed Mandigma, Mark John P. Gschwind, Ruth M. Barham, Joshua P. |
author_sort | Yakubov, Shahboz |
collection | PubMed |
description | Of the methods for direct fluorination of unactivated C(sp(3))–H bonds, photosensitization of SelectFluor is a promising approach. Although many substrates can be activated with photosensitizing catalysts, issues remain that hamper fluorination of complex molecules. Alcohol- or amine-containing functional groups are not tolerated, fluorination regioselectivity follows factors endogenous to the substrate and cannot be influenced by the catalyst, and reactions are highly air-sensitive. We report that benzoyl groups serve as highly efficient photosensitizers which, in combination with SelectFluor, enable visible light-powered direct fluorination of unactivated C(sp(3))–H bonds. Compared to previous photosensitizer architectures, the benzoyls have versatility to function both (i) as a photosensitizing catalyst for simple substrate fluorinations and (ii) as photosensitizing auxiliaries for complex molecule fluorinations that are easily installed and removed without compromising yield. Our auxiliary approach (i) substantially decreases the reaction's induction period, (ii) enables C(sp(3))–H fluorination of many substrates that fail under catalytic conditions, (iii) increases kinetic reproducibility, and (iv) promotes reactions to higher yields, in shorter times, on multigram scales, and even under air. Observations and mechanistic studies suggest an intimate ‘assembly’ of auxiliary and SelectFluor prior/after photoexcitation. The auxiliary allows other E(n)T photochemistry under air. Examples show how auxiliary placement proximally directs regioselectivity, where previous methods are substrate-directed. |
format | Online Article Text |
id | pubmed-9728569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-97285692022-12-19 Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp(3))–H fluorinations Yakubov, Shahboz Stockerl, Willibald J. Tian, Xianhai Shahin, Ahmed Mandigma, Mark John P. Gschwind, Ruth M. Barham, Joshua P. Chem Sci Chemistry Of the methods for direct fluorination of unactivated C(sp(3))–H bonds, photosensitization of SelectFluor is a promising approach. Although many substrates can be activated with photosensitizing catalysts, issues remain that hamper fluorination of complex molecules. Alcohol- or amine-containing functional groups are not tolerated, fluorination regioselectivity follows factors endogenous to the substrate and cannot be influenced by the catalyst, and reactions are highly air-sensitive. We report that benzoyl groups serve as highly efficient photosensitizers which, in combination with SelectFluor, enable visible light-powered direct fluorination of unactivated C(sp(3))–H bonds. Compared to previous photosensitizer architectures, the benzoyls have versatility to function both (i) as a photosensitizing catalyst for simple substrate fluorinations and (ii) as photosensitizing auxiliaries for complex molecule fluorinations that are easily installed and removed without compromising yield. Our auxiliary approach (i) substantially decreases the reaction's induction period, (ii) enables C(sp(3))–H fluorination of many substrates that fail under catalytic conditions, (iii) increases kinetic reproducibility, and (iv) promotes reactions to higher yields, in shorter times, on multigram scales, and even under air. Observations and mechanistic studies suggest an intimate ‘assembly’ of auxiliary and SelectFluor prior/after photoexcitation. The auxiliary allows other E(n)T photochemistry under air. Examples show how auxiliary placement proximally directs regioselectivity, where previous methods are substrate-directed. The Royal Society of Chemistry 2022-11-11 /pmc/articles/PMC9728569/ /pubmed/36540818 http://dx.doi.org/10.1039/d2sc05735b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Yakubov, Shahboz Stockerl, Willibald J. Tian, Xianhai Shahin, Ahmed Mandigma, Mark John P. Gschwind, Ruth M. Barham, Joshua P. Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp(3))–H fluorinations |
title | Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp(3))–H fluorinations |
title_full | Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp(3))–H fluorinations |
title_fullStr | Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp(3))–H fluorinations |
title_full_unstemmed | Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp(3))–H fluorinations |
title_short | Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp(3))–H fluorinations |
title_sort | benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct c(sp(3))–h fluorinations |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9728569/ https://www.ncbi.nlm.nih.gov/pubmed/36540818 http://dx.doi.org/10.1039/d2sc05735b |
work_keys_str_mv | AT yakubovshahboz benzoatesasphotosensitizationcatalystsandauxiliariesinefficientpracticallightpowereddirectcsp3hfluorinations AT stockerlwillibaldj benzoatesasphotosensitizationcatalystsandauxiliariesinefficientpracticallightpowereddirectcsp3hfluorinations AT tianxianhai benzoatesasphotosensitizationcatalystsandauxiliariesinefficientpracticallightpowereddirectcsp3hfluorinations AT shahinahmed benzoatesasphotosensitizationcatalystsandauxiliariesinefficientpracticallightpowereddirectcsp3hfluorinations AT mandigmamarkjohnp benzoatesasphotosensitizationcatalystsandauxiliariesinefficientpracticallightpowereddirectcsp3hfluorinations AT gschwindruthm benzoatesasphotosensitizationcatalystsandauxiliariesinefficientpracticallightpowereddirectcsp3hfluorinations AT barhamjoshuap benzoatesasphotosensitizationcatalystsandauxiliariesinefficientpracticallightpowereddirectcsp3hfluorinations |