Cargando…
From Easy to Hopeless—Predicting the Difficulty of Phylogenetic Analyses
Phylogenetic analyzes under the Maximum-Likelihood (ML) model are time and resource intensive. To adequately capture the vastness of tree space, one needs to infer multiple independent trees. On some datasets, multiple tree inferences converge to similar tree topologies, on others to multiple, topol...
Autores principales: | Haag, Julia, Höhler, Dimitri, Bettisworth, Ben, Stamatakis, Alexandros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9728795/ https://www.ncbi.nlm.nih.gov/pubmed/36395091 http://dx.doi.org/10.1093/molbev/msac254 |
Ejemplares similares
-
Adaptive RAxML-NG: Accelerating Phylogenetic Inference under Maximum Likelihood using Dataset Difficulty
por: Togkousidis, Anastasis, et al.
Publicado: (2023) -
Phylogenetic Analysis of SARS-CoV-2 Data Is Difficult
por: Morel, Benoit, et al.
Publicado: (2020) -
Root Digger: a root placement program for phylogenetic trees
por: Bettisworth, Ben, et al.
Publicado: (2021) -
Phylourny: efficiently calculating elimination tournament win probabilities via phylogenetic methods
por: Bettisworth, Ben, et al.
Publicado: (2023) -
Phylogenetic Analyses Uncover a Novel Clade of Transferrin in Nonmammalian Vertebrates
por: Mohd-Padil, Hirzahida, et al.
Publicado: (2013)