Cargando…
A proof of concept for a deep learning system that can aid embryologists in predicting blastocyst survival after thaw
The ability to understand whether embryos survive the thaw process is crucial to transferring competent embryos that can lead to pregnancy. The objective of this study was to develop a proof of concept deep learning model capable of assisting embryologist assessment of survival of thawed blastocysts...
Autores principales: | Marsh, P., Radif, D., Rajpurkar, P., Wang, Z., Hariton, E., Ribeiro, S., Simbulan, R., Kaing, A., Lin, W., Rajah, A., Rabara, F., Lungren, M., Demirci, U., Ng, A., Rosen, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9729222/ https://www.ncbi.nlm.nih.gov/pubmed/36477633 http://dx.doi.org/10.1038/s41598-022-25062-z |
Ejemplares similares
-
A deep dive into the morphokinetics and ploidy of low-quality blastocysts
por: Quinn, Molly M., et al.
Publicado: (2022) -
High reliability of morphokinetic annotations among embryologists
por: Martínez, M, et al.
Publicado: (2018) -
Blastocyst transfer in frozen-thawed cycles
por: Han, Ae Ra, et al.
Publicado: (2012) -
Morphology vs morphokinetics: a retrospective comparison of
inter-observer and intra-observer agreement between embryologists on blastocysts
with known implantation outcome
por: Adolfsson, Emma, et al.
Publicado: (2018) -
Soledad Sepúlveda or the importance of being an REDLARA
embryologist
por: Urbina, Maria Teresa
Publicado: (2016)