Cargando…

Capsule robot pose and mechanism state detection in ultrasound using attention-based hierarchical deep learning

Ingestible robotic capsules with locomotion capabilities and on-board sampling mechanism have great potential for non-invasive diagnostic and interventional use in the gastrointestinal tract. Real-time tracking of capsule location and operational state is necessary for clinical application, yet rema...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiaoyun, Esser, Daniel, Wagstaff, Brandon, Zavodni, Anna, Matsuura, Naomi, Kelly, Jonathan, Diller, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9729303/
https://www.ncbi.nlm.nih.gov/pubmed/36476715
http://dx.doi.org/10.1038/s41598-022-25572-w
Descripción
Sumario:Ingestible robotic capsules with locomotion capabilities and on-board sampling mechanism have great potential for non-invasive diagnostic and interventional use in the gastrointestinal tract. Real-time tracking of capsule location and operational state is necessary for clinical application, yet remains a significant challenge. To this end, we propose an approach that can simultaneously determine the mechanism state and in-plane 2D pose of millimeter capsule robots in an anatomically representative environment using ultrasound imaging. Our work proposes an attention-based hierarchical deep learning approach and adapts the success of transfer learning towards solving the multi-task tracking problem with limited dataset. To train the neural networks, we generate a representative dataset of a robotic capsule within ex-vivo porcine stomachs. Experimental results show that the accuracy of capsule state classification is 97%, and the mean estimation errors for orientation and centroid position are 2.0 degrees and 0.24 mm (1.7% of the capsule’s body length) on the hold-out test set. Accurate detection of the capsule while manipulated by an external magnet in a porcine stomach and colon is also demonstrated. The results suggest our proposed method has the potential for advancing the wireless capsule-based technologies by providing accurate detection of capsule robots in clinical scenarios.