Cargando…
Compressed composite carbon felt as a negative electrode for a zinc–iron flow battery
Flow batteries possess several attractive features including long cycle life, flexible design, ease of scaling up, and high safety. They are considered an excellent choice for large-scale energy storage. Carbon felt (CF) electrodes are commonly used as porous electrodes in flow batteries. In vanadiu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9729305/ https://www.ncbi.nlm.nih.gov/pubmed/36477629 http://dx.doi.org/10.1038/s41598-022-25763-5 |
Sumario: | Flow batteries possess several attractive features including long cycle life, flexible design, ease of scaling up, and high safety. They are considered an excellent choice for large-scale energy storage. Carbon felt (CF) electrodes are commonly used as porous electrodes in flow batteries. In vanadium flow batteries, both active materials and discharge products are in a liquid phase, thus leaving no trace on the electrode surface. However, zinc-based flow batteries involve zinc deposition/dissolution, structure and configuration of the electrode significantly determine stability and performance of the battery. Herein, fabrication of a compressed composite using CF with polyvinylidene fluoride (PVDF) is investigated in a Zn–Fe flow battery (ZFB). Graphene (G) is successfully introduced in order to improve its electrochemical activity towards zinc reactions on the negative side of the ZFB. A compressed composite CF electrode offers more uniform electric field and lower nucleation overpotential (NOP) of zinc than a pristine CF, resulting in higher zinc plating/stripping efficiency. Batteries with modified electrodes are seen to provide lower overpotential. Particularly, the G-PVDF-CF electrode demonstrates maximum discharge capacity of 39.6 mAh cm(−2) with coulombic efficiency and energy efficiency over 96% and 61%, respectively. Finally, results lead to increased efficiency and cycling stability for flow batteries. |
---|