Cargando…
Geographical classification of malaria parasites through applying machine learning to whole genome sequence data
Malaria, caused by Plasmodium parasites, is a major global health challenge. Whole genome sequencing (WGS) of Plasmodium falciparum and Plasmodium vivax genomes is providing insights into parasite genetic diversity, transmission patterns, and can inform decision making for clinical and surveillance...
Autores principales: | Deelder, Wouter, Manko, Emilia, Phelan, Jody E., Campino, Susana, Palla, Luigi, Clark, Taane G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9729610/ https://www.ncbi.nlm.nih.gov/pubmed/36476815 http://dx.doi.org/10.1038/s41598-022-25568-6 |
Ejemplares similares
-
Using deep learning to identify recent positive selection in malaria parasite sequence data
por: Deelder, Wouter, et al.
Publicado: (2021) -
Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data
por: Deelder, Wouter, et al.
Publicado: (2019) -
A modified decision tree approach to improve the prediction and mutation discovery for drug resistance in Mycobacterium tuberculosis
por: Deelder, Wouter, et al.
Publicado: (2022) -
TB-ML—a framework for comparing machine learning approaches to predict drug resistance of Mycobacterium tuberculosis
por: Libiseller-Egger, Julian, et al.
Publicado: (2023) -
COVID-profiler: a webserver for the analysis of SARS-CoV-2 sequencing data
por: Phelan, Jody, et al.
Publicado: (2022)