Cargando…
Prediction of oxygen requirement in patients with COVID-19 using a pre-trained chest radiograph xAI model: efficient development of auditable risk prediction models via a fine-tuning approach
Risk prediction requires comprehensive integration of clinical information and concurrent radiological findings. We present an upgraded chest radiograph (CXR) explainable artificial intelligence (xAI) model, which was trained on 241,723 well-annotated CXRs obtained prior to the onset of the COVID-19...
Autores principales: | Chung, Joowon, Kim, Doyun, Choi, Jongmun, Yune, Sehyo, Song, Kyoung Doo, Kim, Seonkyoung, Chua, Michelle, Succi, Marc D., Conklin, John, Longo, Maria G. Figueiro, Ackman, Jeanne B., Petranovic, Milena, Lev, Michael H., Do, Synho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9729627/ https://www.ncbi.nlm.nih.gov/pubmed/36476724 http://dx.doi.org/10.1038/s41598-022-24721-5 |
Ejemplares similares
-
Author Correction: Prediction of oxygen requirement in patients with COVID-19 using a pre-trained chest radiograph xAI model: efficient development of auditable risk prediction models via a fine-tuning approach
por: Chung, Joowon, et al.
Publicado: (2023) -
Accurate auto-labeling of chest X-ray images based on quantitative similarity to an explainable AI model
por: Kim, Doyun, et al.
Publicado: (2022) -
MarkIt: A Collaborative Artificial Intelligence Annotation Platform Leveraging Blockchain For Medical Imaging Research
por: Witowski, Jan, et al.
Publicado: (2021) -
Hands-On Explainable AI (XAI) with Python
por: Rothman, Denis
Publicado: (2020) -
Beyond Human Perception: Sexual Dimorphism in Hand and Wrist Radiographs Is Discernible by a Deep Learning Model
por: Yune, Sehyo, et al.
Publicado: (2018)