Cargando…

Promotion of Specific Single-Transverse-Mode Beam Characteristics for GaSb-Based Narrow Ridge Waveguide Lasers via Customized Parameter Design

GaSb-based single-transverse-mode narrow ridge waveguide (RW) lasers with high power and simultaneous good beam quality have broad application prospects in the mid-infrared wavelength region. Yet its design and formation have not been investigated systematically, while the beam characteristics that...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Tianfang, Yang, Chengao, Chen, Yihang, Shi, Jianmei, Yu, Hongguang, Su, Xiangbin, Zhang, Yu, Xu, Yingqiang, Niu, Zhichuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9729666/
https://www.ncbi.nlm.nih.gov/pubmed/36477446
http://dx.doi.org/10.1186/s11671-022-03758-5
Descripción
Sumario:GaSb-based single-transverse-mode narrow ridge waveguide (RW) lasers with high power and simultaneous good beam quality have broad application prospects in the mid-infrared wavelength region. Yet its design and formation have not been investigated systematically, while the beam characteristics that affect their suitability for specific applications remain rarely analyzed and optimized. The present work addresses these issues by theoretically establishing a waveguide parameter domain that generalizes the overall possible combinations of ridge widths and etch depths that support single-transverse-mode operation for GaSb-based RW lasers. These results are applied to develop two distinct and representative waveguide designs derived from two proposed major optimization routes of model gain expansion and index-guiding enhancement. The designs were evaluated experimentally based on prototype 1-mm cavity-length RW lasers in the 1950 nm wavelength range, which were fabricated with waveguides having perpendicular ridge and smooth side-walls realized through optimized dry etching conditions. The model gain expanded RW laser design with a relatively shallow-etched (i.e., 1.55 [Formula: see text] m) and wide ridge (i.e., 7 [Formula: see text] m) yielded the highest single-transverse-mode power to date of 258 mW with a narrow lateral divergence angle of 11.1[Formula: see text] full width at half maximum at 800 mA under room-temperature continuous-wave operation, which offers promising prospects in pumping and coupling applications. Meanwhile, the index-guiding enhanced RW laser design with a relatively deeply etched (i.e., 2.05 [Formula: see text] m) and narrow ridge (i.e., 4 [Formula: see text] m) provided a highly stable and nearly astigmatism-free fundamental mode emission with an excellent beam quality of M[Formula: see text] factor around 1.5 over the entire operating current range, which is preferable for seeding external cavity applications and complex optical systems.