Cargando…

DNA computing for gastric cancer analysis and functional classification

Early identification of key biomarkers of malignant cancer is vital for patients’ prognosis and therapies. There is research demonstrating that microRNAs are important biomarkers for cancer analysis. In this article, we used the DNA strand displacement mechanism (DSD) to construct the DNA computing...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Congzhou, Chen, Xin, Li, Xin, Shi, Xiaolong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9729876/
https://www.ncbi.nlm.nih.gov/pubmed/36506309
http://dx.doi.org/10.3389/fgene.2022.1064715
Descripción
Sumario:Early identification of key biomarkers of malignant cancer is vital for patients’ prognosis and therapies. There is research demonstrating that microRNAs are important biomarkers for cancer analysis. In this article, we used the DNA strand displacement mechanism (DSD) to construct the DNA computing system for cancer analysis. First, gene chips were obtained through bioinformatical training. These microRNA data and clinical traits were obtained from the Cancer Genome Atlas (TCGA) dataset. Second, we analyzed the expression data by using a weighted gene co-expression network (WGCNA) and found four biomarkers for two clinic features, respectively. Last, we constructed a DSD-based DNA computing system for cancer analysis. The inputs of the system are these identified biomarkers; the outputs are the fluorescent signals that represent their corresponding traits. The experiment and simulation results demonstrated the reliability of the DNA computing system. This DSD simulation system is lab-free but clinically meaningful. We expect this innovative method to be useful for rapid and accurate cancer diagnosis.