Cargando…
TULIP: An RNA-seq-based Primary Tumor Type Prediction Tool Using Convolutional Neural Networks
BACKGROUND: With cancer as one of the leading causes of death worldwide, accurate primary tumor type prediction is critical in identifying genetic factors that can inhibit or slow tumor progression. There have been efforts to categorize primary tumor types with gene expression data using machine lea...
Autores principales: | Jones, Sara, Beyers, Matthew, Shukla, Maulik, Xia, Fangfang, Brettin, Thomas, Stevens, Rick, Weil, M Ryan, Ranganathan Ganakammal, Satishkumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9729992/ https://www.ncbi.nlm.nih.gov/pubmed/36507076 http://dx.doi.org/10.1177/11769351221139491 |
Ejemplares similares
-
cTULIP: application of a human-based RNA-seq primary tumor classification tool for cross-species primary tumor classification in canine
por: Long, Jiaxin, et al.
Publicado: (2023) -
Converting tabular data into images for deep learning with convolutional neural networks
por: Zhu, Yitan, et al.
Publicado: (2021) -
Publisher Correction: Converting tabular data into images for deep learning with convolutional neural networks
por: Zhu, Yitan, et al.
Publicado: (2021) -
An Ensemble Approach to Predict the Pathogenicity of Synonymous Variants
por: Ranganathan Ganakammal, Satishkumar, et al.
Publicado: (2020) -
Evaluation of performance of leading algorithms for variant pathogenicity predictions and designing a combinatory predictor method: application to Rett syndrome variants
por: Ganakammal, Satishkumar Ranganathan, et al.
Publicado: (2019)