Cargando…

Interventions for non-alcoholic liver disease: a gut microbial metabolites perspective

Over the past two decades, non-alcoholic fatty liver disease (NAFLD) has become a leading burden of hepatocellular carcinoma and liver transplantation. Although the exact pathogenesis of NAFLD has not been fully elucidated, recent hypotheses placed more emphasis on the crucial role of the gut microb...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Jin, Shi, Chun-Xia, Zhang, Qing-Qi, Deng, Wei, Zhang, Lu-Yi, Chen, Qian, Zhang, Dan-Mei, Gong, Zuo-Jiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730013/
https://www.ncbi.nlm.nih.gov/pubmed/36506748
http://dx.doi.org/10.1177/17562848221138676
Descripción
Sumario:Over the past two decades, non-alcoholic fatty liver disease (NAFLD) has become a leading burden of hepatocellular carcinoma and liver transplantation. Although the exact pathogenesis of NAFLD has not been fully elucidated, recent hypotheses placed more emphasis on the crucial role of the gut microbiome and its derivatives. Reportedly, microbial metabolites such as short-chain fatty acids, amino acid metabolites (indole and its derivatives), bile acids (BAs), trimethylamine N-oxide (TMAO), and endogenous ethanol exhibit sophisticated bioactive properties. These molecules regulate host lipid, glucose, and BAs metabolic homeostasis via modulating nutrient absorption, energy expenditure, inflammation, and the neuroendocrine axis. Consequently, a broad range of research has studied the therapeutic effects of microbiota-derived metabolites. In this review, we explore the interaction of microbial products and NAFLD. We also discuss the regulatory role of existing NAFLD therapies on metabolite levels and investigate the potential of targeting those metabolites to relieve NAFLD.