Cargando…
Synthetic distracted driving (SynDD1) dataset for analyzing distracted behaviors and various gaze zones of a driver
This article presents a synthetic distracted driving (SynDD1) dataset for machine learning models to detect and analyze drivers' various distracted behavior and different gaze zones. We collected the data in a stationary vehicle using three in-vehicle cameras positioned at locations: on the das...
Autores principales: | Rahman, Mohammed Shaiqur, Venkatachalapathy, Archana, Sharma, Anuj, Wang, Jiyang, Gursoy, Senem Velipasalar, Anastasiu, David, Wang, Shuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730022/ https://www.ncbi.nlm.nih.gov/pubmed/36506800 http://dx.doi.org/10.1016/j.dib.2022.108793 |
Ejemplares similares
-
To distract or not to distract
por: Balaji, S. M.
Publicado: (2013) -
How do (perceptual) distracters distract?
por: Dumbalska, Tsvetomira, et al.
Publicado: (2022) -
Driver Distraction Using Visual-Based Sensors and Algorithms
por: Fernández, Alberto, et al.
Publicado: (2016) -
Why Are We Distracted by Social Media? Distraction Situations and Strategies, Reasons for Distraction, and Individual Differences
por: Koessmeier, Christina, et al.
Publicado: (2021) -
The influence of distracter and target features on distracter induced
blindness
por: Michael, Lars, et al.
Publicado: (2012)