Cargando…
Dynamical interaction of solitary, periodic, rogue type wave solutions and multi-soliton solutions of the nonlinear models
This study presents a modification form of modified simple equation method, namely new modified simple equation method. Multiple waves and interaction of soliton solutions of the Phi-4 and Klein-Gordon models are investigated via the scheme. Consequently, we derive various novels and more general in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730130/ https://www.ncbi.nlm.nih.gov/pubmed/36506367 http://dx.doi.org/10.1016/j.heliyon.2022.e11996 |
Sumario: | This study presents a modification form of modified simple equation method, namely new modified simple equation method. Multiple waves and interaction of soliton solutions of the Phi-4 and Klein-Gordon models are investigated via the scheme. Consequently, we derive various novels and more general interaction, and multiple wave solutions in term of exponential, hyperbolic, and trigonometric, rational function solutions combining with some free parameters. Taking special values of the free parameters, interaction of two dark bells, interaction of two bright bells, two kinks, two periodic waves, kink and soliton, kink-rogue wave solutions are obtained which is the key significance of this method. Properties of the achieved solutions have many useful descriptions of physical behavior, correlated to the solutions are attained in this work through plentiful 3D figures, density plot and 2D contour plots. The results derived may increase the prospect of performing significant experimentations and carry out probable applications. |
---|