Cargando…
An attention base U-net for parotid tumor autosegmentation
A parotid neoplasm is an uncommon condition that only accounts for less than 3% of all head and neck cancers, and they make up less than 0.3% of all new cancers diagnosed annually. Due to their nonspecific imaging features and heterogeneous nature, accurate preoperative diagnosis remains a challenge...
Autores principales: | Xia, Xianwu, Wang, Jiazhou, Liang, Sheng, Ye, Fangfang, Tian, Min-Ming, Hu, Weigang, Xu, Leiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730401/ https://www.ncbi.nlm.nih.gov/pubmed/36505865 http://dx.doi.org/10.3389/fonc.2022.1028382 |
Ejemplares similares
-
Deep Learning for Differentiating Benign From Malignant Parotid Lesions on MR Images
por: Xia, Xianwu, et al.
Publicado: (2021) -
The suitability of common metrics for assessing parotid and larynx autosegmentation accuracy
por: Beasley, William J., et al.
Publicado: (2016) -
Transfer Learning-Based Autosegmentation of Primary Tumor Volumes of Glioblastomas Using Preoperative MRI for Radiotherapy Treatment
por: Tian, Suqing, et al.
Publicado: (2022) -
Feasibility study of adaptive radiotherapy for esophageal cancer using artificial intelligence autosegmentation based on MR-Linac
por: Wang, Huadong, et al.
Publicado: (2023) -
Multi-Task Deep Supervision on Attention R2U-Net for Brain Tumor Segmentation
por: Ma, Shiqiang, et al.
Publicado: (2021)