Cargando…

Structural Characterization of Polycrystalline Titania Nanoparticles on C. striata Biosilica for Photocatalytic POME Degradation

[Image: see text] The biosilica shell of marine diatoms has emerged as a unique matrix for photocatalysis, owing to its sophisticated architecture with hierarchical nanopores and large surface area. Although the deposition of titania nanoparticles on diatom biosilica has been demonstrated previously...

Descripción completa

Detalles Bibliográficos
Autores principales: Putri, Rindia M., Almunadya, Novi Syahra, Amri, Aryan Fathoni, Afnan, Nadia Tuada, Nurachman, Zeily, Devianto, Hary, Saputera, Wibawa Hendra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730491/
https://www.ncbi.nlm.nih.gov/pubmed/36506184
http://dx.doi.org/10.1021/acsomega.2c05450
_version_ 1784845683679821824
author Putri, Rindia M.
Almunadya, Novi Syahra
Amri, Aryan Fathoni
Afnan, Nadia Tuada
Nurachman, Zeily
Devianto, Hary
Saputera, Wibawa Hendra
author_facet Putri, Rindia M.
Almunadya, Novi Syahra
Amri, Aryan Fathoni
Afnan, Nadia Tuada
Nurachman, Zeily
Devianto, Hary
Saputera, Wibawa Hendra
author_sort Putri, Rindia M.
collection PubMed
description [Image: see text] The biosilica shell of marine diatoms has emerged as a unique matrix for photocatalysis, owing to its sophisticated architecture with hierarchical nanopores and large surface area. Although the deposition of titania nanoparticles on diatom biosilica has been demonstrated previously, their photocatalytic activity has been tested only for degradation of pure compounds, such as dyes, nitrogen oxide, and aldehydes. The efficiency of such photocatalysts for degradation of mixtures, for instance, industrial wastewaters, is yet to be investigated. Furthermore, reports on the lattice structures and orientation of nanotitania crystals on biosilica are considerably limited, especially for the underexplored tropical marine diatoms. Here, we report an extensive characterization of titania-loaded biosilica from the tropical Cyclotella striata diatom, starting from freshly grown cell cultures to photodegradation of wastewaters, namely, the palm oil mill effluent (POME). As Indonesia is the largest palm oil producer in the world, photocatalytic technology could serve as a sustainable alternative for local treatment of POME. In this study, we achieved a 54% loading of titania on C. striata TBI strain biosilica, as corroborated by XRF analyses, which was considerably high compared to previous studies. Through visualization using HR-TEM, supported by SAED and XRD analyses, nanocrystal TiO(2) appeared to be trapped in an anatase phase with polycrystalline characteristics and distinct crystallographic orientations. Importantly, the presence of C. striata biosilica lowered the band gap of titania from 3.41 eV to around 3.2 eV upon deposition, enabling photodegradation of POME using a broad-range xenon lamp as the light source, mimicking the sunlight. Kinetic analyses revealed that POME degradation using the photocatalysts followed quasi-first-order kinetics, in which the highest titania content resulted in the highest photocatalytic activity (i.e., up to 47% decrease in chemical oxygen demand) and exhibited good photostability throughout the reaction cycles. Unraveling the structure and photoactivity of titania-biosilica catalysts allows transforming marine diatoms into functional materials for wastewater photodegradation.
format Online
Article
Text
id pubmed-9730491
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-97304912022-12-09 Structural Characterization of Polycrystalline Titania Nanoparticles on C. striata Biosilica for Photocatalytic POME Degradation Putri, Rindia M. Almunadya, Novi Syahra Amri, Aryan Fathoni Afnan, Nadia Tuada Nurachman, Zeily Devianto, Hary Saputera, Wibawa Hendra ACS Omega [Image: see text] The biosilica shell of marine diatoms has emerged as a unique matrix for photocatalysis, owing to its sophisticated architecture with hierarchical nanopores and large surface area. Although the deposition of titania nanoparticles on diatom biosilica has been demonstrated previously, their photocatalytic activity has been tested only for degradation of pure compounds, such as dyes, nitrogen oxide, and aldehydes. The efficiency of such photocatalysts for degradation of mixtures, for instance, industrial wastewaters, is yet to be investigated. Furthermore, reports on the lattice structures and orientation of nanotitania crystals on biosilica are considerably limited, especially for the underexplored tropical marine diatoms. Here, we report an extensive characterization of titania-loaded biosilica from the tropical Cyclotella striata diatom, starting from freshly grown cell cultures to photodegradation of wastewaters, namely, the palm oil mill effluent (POME). As Indonesia is the largest palm oil producer in the world, photocatalytic technology could serve as a sustainable alternative for local treatment of POME. In this study, we achieved a 54% loading of titania on C. striata TBI strain biosilica, as corroborated by XRF analyses, which was considerably high compared to previous studies. Through visualization using HR-TEM, supported by SAED and XRD analyses, nanocrystal TiO(2) appeared to be trapped in an anatase phase with polycrystalline characteristics and distinct crystallographic orientations. Importantly, the presence of C. striata biosilica lowered the band gap of titania from 3.41 eV to around 3.2 eV upon deposition, enabling photodegradation of POME using a broad-range xenon lamp as the light source, mimicking the sunlight. Kinetic analyses revealed that POME degradation using the photocatalysts followed quasi-first-order kinetics, in which the highest titania content resulted in the highest photocatalytic activity (i.e., up to 47% decrease in chemical oxygen demand) and exhibited good photostability throughout the reaction cycles. Unraveling the structure and photoactivity of titania-biosilica catalysts allows transforming marine diatoms into functional materials for wastewater photodegradation. American Chemical Society 2022-11-18 /pmc/articles/PMC9730491/ /pubmed/36506184 http://dx.doi.org/10.1021/acsomega.2c05450 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Putri, Rindia M.
Almunadya, Novi Syahra
Amri, Aryan Fathoni
Afnan, Nadia Tuada
Nurachman, Zeily
Devianto, Hary
Saputera, Wibawa Hendra
Structural Characterization of Polycrystalline Titania Nanoparticles on C. striata Biosilica for Photocatalytic POME Degradation
title Structural Characterization of Polycrystalline Titania Nanoparticles on C. striata Biosilica for Photocatalytic POME Degradation
title_full Structural Characterization of Polycrystalline Titania Nanoparticles on C. striata Biosilica for Photocatalytic POME Degradation
title_fullStr Structural Characterization of Polycrystalline Titania Nanoparticles on C. striata Biosilica for Photocatalytic POME Degradation
title_full_unstemmed Structural Characterization of Polycrystalline Titania Nanoparticles on C. striata Biosilica for Photocatalytic POME Degradation
title_short Structural Characterization of Polycrystalline Titania Nanoparticles on C. striata Biosilica for Photocatalytic POME Degradation
title_sort structural characterization of polycrystalline titania nanoparticles on c. striata biosilica for photocatalytic pome degradation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730491/
https://www.ncbi.nlm.nih.gov/pubmed/36506184
http://dx.doi.org/10.1021/acsomega.2c05450
work_keys_str_mv AT putririndiam structuralcharacterizationofpolycrystallinetitaniananoparticlesoncstriatabiosilicaforphotocatalyticpomedegradation
AT almunadyanovisyahra structuralcharacterizationofpolycrystallinetitaniananoparticlesoncstriatabiosilicaforphotocatalyticpomedegradation
AT amriaryanfathoni structuralcharacterizationofpolycrystallinetitaniananoparticlesoncstriatabiosilicaforphotocatalyticpomedegradation
AT afnannadiatuada structuralcharacterizationofpolycrystallinetitaniananoparticlesoncstriatabiosilicaforphotocatalyticpomedegradation
AT nurachmanzeily structuralcharacterizationofpolycrystallinetitaniananoparticlesoncstriatabiosilicaforphotocatalyticpomedegradation
AT deviantohary structuralcharacterizationofpolycrystallinetitaniananoparticlesoncstriatabiosilicaforphotocatalyticpomedegradation
AT saputerawibawahendra structuralcharacterizationofpolycrystallinetitaniananoparticlesoncstriatabiosilicaforphotocatalyticpomedegradation